Redis は、memcached と同様に、高パフォーマンスのキーと値のデータベースです。キャッシュ サーバーとは何かについては、Du Niang が非常に明確に説明しているため、ここでは個別に紹介しません。 。
では、私たちは通常どのような状況でキャッシュサーバーを使用するのでしょうか?すべての状況で必要なわけではありません。一般的に、このフィールドをキャッシュ サーバーに置く必要があるのは、フィールドを頻繁に読み取る必要がある場合だけです。また、キーと値のデータベースには非常に単純なデータしか格納されないため、その必要があります。保存するオブジェクトを選択するときは注意してください。
次に、Django で Redis データベースを構成して使用する方法を紹介します。まず、Ubuntu で次のコマンドを実行します。 Django で redis を使用するには、Django プラグインの redis をインストールする必要があります:
sudo apt-get install redis-server
これはオープンソース プロジェクトであり、github アドレスは https://github.com/niwibe/django-redis です。作者に感謝します。
これで、Django 設定で構成されました。
pip install django-redis
実際に必要なのは CACHES にあるこれらの項目だけです。次の 3 つの文は必要ありませんが、後の例では必要になるため、ここで設定しました。
さて、接続と設定が完了したので、プロジェクトでどのように使用するのでしょうか?次の例を見てみましょう。
CACHES = { 'default': { 'BACKEND': 'redis_cache.cache.RedisCache', 'LOCATION': '127.0.0.1:6379', "OPTIONS": { "CLIENT_CLASS": "redis_cache.client.DefaultClient", }, }, } REDIS_TIMEOUT=7*24*60*60 CUBES_REDIS_TIMEOUT=60*60 NEVER_REDIS_TIMEOUT=365*24*60*60
上記の 2 つのメソッドを通じて、必要なフィールドをパラメーターとしてメソッドに渡すだけで、redis の読み取り操作を実現できます。
それでは、前に述べた memcached についてはどうでしょうか?実際、これは同じ構成です:
from django.conf import settings from django.core.cache import cache #read cache user id def read_from_cache(self, user_name): key = 'user_id_of_'+user_name value = cache.get(key) if value == None: data = None else: data = json.loads(value) return data #write cache user id def write_to_cache(self, user_name): key = 'user_id_of_'+user_name cache.set(key, json.dumps(user_name), settings.NEVER_REDIS_TIMEOUT)
もちろん、使用方法は上記の例と同じです。実際、redis のようなキャッシュ サーバーの場合、構成は非常に簡単で、具体的な使用方法も難しくありません。参考になるように、公式 Web サイトに多くのシンプルで明確な例があります。注意すべき点は 1 つだけです。この種の情報を Redis に保存することは、本当に注意する必要があることです。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

2時間以内にPythonを効率的に学習する方法は次のとおりです。1。基本的な知識を確認し、Pythonのインストールと基本的な構文に精通していることを確認します。 2。変数、リスト、関数など、Pythonのコア概念を理解します。 3.例を使用して、基本的および高度な使用をマスターします。 4.一般的なエラーとデバッグテクニックを学習します。 5.リストの概念を使用したり、PEP8スタイルガイドに従ったりするなど、パフォーマンスの最適化とベストプラクティスを適用します。

Pythonは初心者やデータサイエンスに適しており、Cはシステムプログラミングとゲーム開発に適しています。 1. Pythonはシンプルで使いやすく、データサイエンスやWeb開発に適しています。 2.Cは、ゲーム開発とシステムプログラミングに適した、高性能と制御を提供します。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Pythonはデータサイエンスと迅速な発展により適していますが、Cは高性能およびシステムプログラミングにより適しています。 1. Python構文は簡潔で学習しやすく、データ処理と科学的コンピューティングに適しています。 2.Cには複雑な構文がありますが、優れたパフォーマンスがあり、ゲーム開発とシステムプログラミングでよく使用されます。

Pythonを学ぶために1日2時間投資することは可能です。 1.新しい知識を学ぶ:リストや辞書など、1時間で新しい概念を学びます。 2。練習と練習:1時間を使用して、小さなプログラムを書くなどのプログラミング演習を実行します。合理的な計画と忍耐力を通じて、Pythonのコアコンセプトを短時間で習得できます。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

WebStorm Mac版
便利なJavaScript開発ツール
