ホームページ  >  記事  >  バックエンド開発  >  無限分類左右値実装アルゴリズム

無限分類左右値実装アルゴリズム

WBOY
WBOYオリジナル
2016-07-29 09:14:401133ブラウズ

1. はじめに

製品分類、複数レベルのツリー構造のフォーラム、メーリング リスト、その他多くの場所で、次のような問題に遭遇します。 PHP アプリケーションでは、バックエンド データ ストレージは通常、大量のデータを保存し、効率的なデータ取得と更新サービスを提供できるリレーショナル データベースです。ただし、リレーショナル データの基本的な形式はフラットな構造である十字テーブルです。リレーショナル データベースに複数レベルのツリー構造を格納したい場合は、適切な変換作業を実行する必要があります。次に、私が見聞きしたことや実際の経験についてお話します。
階層データをフラット データベースに保存するには、基本的に 2 つの一般的な設計方法があります:
* 隣接リストモデル
* 修正された予約注文ツリー トラバーサル アルゴリズム

2. モデル

ここでは、サンプル データとして単純な食品ディレクトリを使用します。
私たちのデータ構造は次のとおりです:

<code>Food
<span>|</span><span>|---Fruit</span><span>|    |</span><span>|    |---Red</span><span>|    |    |</span><span>|    |    |--Cherry</span><span>|    |</span><span>|    +---Yellow</span><span>|          |</span><span>|          +--Banana</span><span>|</span>
+---Meat
      <span>|--Beef</span>
      +--Pork</code>

英語でめちゃくちゃなPHP愛好家に対処するために

<code>Food  : 食物
Fruit : 水果
Red   : 红色
<span>Cherry:</span> 樱桃
<span>Yellow:</span> 黄色
<span>Banana:</span> 香蕉
Meat  : 肉类
Beef  : 牛肉
Pork  : 猪肉</code>

3. 実装

1. 隣接リストモデル(隣接リストモデル)

私たちはこのモデルをよく使います。はい、多くのチュートリアルや書籍で紹介されています。各ノードに親ノードを追加して、このノードの親ノードを表すことにより、フラット テーブルを通じてツリー構造全体を記述します。この原則に従って、例のデータは次のテーブルに変換できます:
コードは次のとおりです:

<code><span>+-----------------------+</span><span>|   parent |    name    |
+-----------------------+</span>
|          |    Food    |
|   Food   |   Fruit    |
|   Fruit  |    Green   |
|   Green  |    Pear    |
|   Fruit  |    Red     |
|   Red    |    Cherry  |
|   Fruit  |    Yellow  |
|   Yellow |    Banana  |
|   Food   |    Meat    |
|   Meat   |    Beef    |
<span>|   Meat   |    Pork    |
+-----------------------+</span></code>

Pear が Green の子ノードであり、Green が Fruit の子ノードであることがわかります。ルート ノード「Food」には親ノードがありません。 この問題を簡単に説明するために、この例では名前のみを使用してレコードを表します。 実際のデータベースでは、各ノードを識別するために数値 ID を使用する必要があります。データベースのテーブル構造は、id、parent_id、name、description のようになります。
このようなテーブルを使用すると、マルチレベル ツリー構造全体をデータベースに保存できます。

複数レベルのツリーを表示する このような複数レベルの構造を表示する必要がある場合は、再帰関数が必要です。
以下はコードです:

<code><span><span><?php</span><span>// $parent is the parent of the children we want to see</span><span>// $level is increased when we go deeper into the tree,</span><span>//        used to display a nice indented tree</span><span><span>function</span><span>display_children</span><span>(<span>$parent</span>, <span>$level</span>)</span> {</span><span>// 获得一个 父节点 $parent 的所有子节点</span><span>$result</span> = mysql_query(<span>"
        SELECT name
        FROM tree
        WHERE parent = '"</span> . <span>$parent</span> . <span>"'
        ;"</span>
    );
    <span>// 显示每个子节点</span><span>while</span> (<span>$row</span> = mysql_fetch_array(<span>$result</span>)) {
        <span>// 缩进显示节点名称</span><span>echo</span> str_repeat(<span>'  '</span>, <span>$level</span>) . <span>$row</span>[<span>'name'</span>] . <span>"\n"</span>;
        <span>//再次调用这个函数显示子节点的子节点</span>
        display_children(<span>$row</span>[<span>'name'</span>], <span>$level</span>+<span>1</span>);
    }
}
<span>?></span></span></code>

構造全体のルート ノード (Food) でこの関数を使用して、マルチレベル ツリー構造全体を出力します。 Food はルート ノードであり、その親ノードは空であるため、次のように呼び出します。これ:display_children(", 0)。ツリー全体の内容を表示します:

<code>Food
    Fruit
        <span>Red</span>
            Cherry
        <span>Yellow</span>
            Banana
    Meat
        Beef
        Pork</code>

フルーツの部分など、構造全体の一部だけを表示したい場合は、次のように呼び出すことができます:display_children(' Fruit',0);

ほぼ同じ方法で、例えばCherryのパスを「Food >; Fruit >; Red」とすることで、ルートノードから任意のノードまでのパスを知ることができます。このようなパスの場合は、最も深いレベル「Cherry」から開始してそれをクエリし、親ノード「Red」がそれをパスに追加し、次に Red の親ノードをクエリしてパスに追加する、というようになります。最上位の「Food」までのコードは次のとおりです:

<code><span><span><?php</span><span>// $node 是那个最深的节点</span><span><span>function</span><span>get_path</span><span>(<span>$node</span>)</span> {</span><span>// 查询这个节点的父节点</span><span>$result</span> = mysql_query(<span>"
        SELECT parent
        FROM tree
        WHERE name = '"</span> . <span>$node</span> .<span>"'
        ;"</span>
    );
    <span>$row</span> = mysql_fetch_array(<span>$result</span>);
    <span>// 用一个数组保存路径</span><span>$path</span> = <span>array</span>();
    <span>// 如果不是根节点则继续向上查询</span><span>// (根节点没有父节点)</span><span>if</span> (<span>$row</span>[<span>'parent'</span>] != <span>''</span>) {
        <span>// the last part of the path to $node, is the name</span><span>// of the parent of $node</span><span>$path</span>[] = <span>$row</span>[<span>'parent'</span>];
        <span>// we should add the path to the parent of this node</span><span>// to the path</span><span>$path</span> = array_merge(get_path(<span>$row</span>[<span>'parent'</span>]), <span>$path</span>);
    }
    <span>// return the path</span><span>return</span><span>$path</span>;
}
<span>?></span></span></code>

「はい」の場合、「Cherry」はこの関数を使用します: print_r(get_path('Cherry'))、次のような配列が得られます:

<code><span>Array</span> (
    [<span>0</span>] => Food
    [<span>1</span>] => Fruit
    [<span>2</span>] => Red
)</code>

How希望の形式で印刷するかどうかはあなた次第です

欠点:
。 この方法はシンプルで理解しやすく、使いやすいです。しかし、いくつかの欠点もあります。主な理由は、実行速度が非常に遅いこと、各ノードでデータベース クエリが必要であること、データ量が多い場合にはツリーを完成させるために多くのクエリが必要になることです。さらに、再帰的な操作が必要なため、再帰の各レベルである程度のメモリを占有する必要があるため、スペースの利用効率は比較的低くなります。

2. プレオーダー ツリー トラバーサル アルゴリズム

次に、再帰計算を使用しない別の高速な方法、つまり修正されたプレオーダー ツリー トラバーサル アルゴリズムを見てみましょう。 この方法を使用する機会は少ないかもしれません。また、初めて使用する場合は上記の方法ほど理解しにくいですが、この方法は再帰クエリ アルゴリズムを使用しないため、クエリ効率が高くなります。

まず次のように紙にマルチレベルデータを描きます。ルートノード「食べ物」の左側に「1」を書き込み、次にツリーを下に進み、「果物」の左側に「2」を書き込み、全体に沿って移動を続けます。ツリーの端には、各ノードの左右に番号が付けられています。最後の数字は Food の右側にマークされた 18 です。下の図では、番号が付けられたマルチレベル構造全体が表示されます。 (わかりませんか?指で数字を指して、1から18まで数えてみるとわかります。それでもわからない場合は、指の動きに注意してもう一度数えてください。)

これらの番号は、各ノード間の関係を示しています。「Red」の番号は 3 と 6 であり、「Food」1 ~ 18 の子孫ノードです。 同様に、左側の値が 2 より大きく、右側の値が 11 未満であるすべてのノードが「Fruit」2-11 の子孫ノードであることがわかります。
コードは次のとおりです:

<code><span>1</span> Food <span>18</span><span>|</span>
            +------------------------------+
            <span>|                              |</span><span>2</span> Fruit <span>11</span><span>12</span> Meat <span>17</span><span>|                              |</span>
    +-------------+                 +------------+
    <span>|             |                 |            |</span><span>3</span> Red <span>6</span><span>7</span> Yellow <span>10</span><span>13</span> Beef <span>14</span><span>15</span> Pork <span>16</span><span>|             |</span><span>4</span> Cherry <span>5</span><span>8</span> Banana <span>9</span></code>
このようにして、ツリー構造全体を左と右の値を通じてデータベースに保存できます。続行する前に、以下の編集されたデータ表を見てみましょう。

コードは次のとおりです:

<code><span>+----------+</span>------------<span>+-----+</span>-----+
<span>|  parent  |    name    | lft | rgt |
+----------+------------+-----+-----+</span>
|          |    Food    | 1   | 18  |
|   Food   |   Fruit    | 2   | 11  |
|   Fruit  |    Red     | 3   |  6  |
|   Red    |    Cherry  | 4   |  5  |
|   Fruit  |    Yellow  | 7   | 10  |
|   Yellow |    Banana  | 8   |  9  |
|   Food   |    Meat    | 12  | 17  |
|   Meat   |    Beef    | 13  | 14  |
<span>|   Meat   |    Pork    | 15  | 16  |
+----------+------------+-----+-----+</span></code>

注意:由于”left”和”right”在 SQL中有特殊的意义,所以我们需要用”lft”和”rgt”来表示左右字段。 另外这种结构中不再需要”parent”字段来表示树状结构。也就是 说下面这样的表结构就足够了。
以下是代码:

<code><span>+------------+</span>-----<span>+-----+</span><span>|    name    | lft | rgt |
+------------+-----+-----+</span>
|    Food    | 1   | 18  |
|    Fruit   | 2   | 11  |
|    Red     | 3   |  6  |
|    Cherry  | 4   |  5  |
|    Yellow  | 7   | 10  |
|    Banana  | 8   |  9  |
|    Meat    | 12  | 17  |
|    Beef    | 13  | 14  |
<span>|    Pork    | 15  | 16  |
+------------+-----+-----+</span></code>

好了我们现在可以从数据库中获取数据了,例如我们需要得到”Fruit”项下的所有所有节点就可以这样写查询语句:

<code><span><span>SELECT</span> * <span>FROM</span> tree <span>WHERE</span> lft BETWEEN <span>2</span><span>AND</span><span>11</span>;</span></code>

这个查询得到了以下的结果。
以下是代码:

<code><span>+------------+</span>-----<span>+-----+</span><span>|    name    | lft | rgt |
+------------+-----+-----+</span>
|    Fruit   | 2   | 11  |
|    Red     | 3   |  6  |
|    Cherry  | 4   |  5  |
|    Yellow  | 7   | 10  |
<span>|    Banana  | 8   |  9  |
+------------+-----+-----+</span></code>

看到了吧,只要一个查询就可以得到所有这些节点。为了能够像上面的递归函数那样显示整个树状结构,我们还需要对这样的查询进行排序。用节点的左值进行排序:

<code><span><span>SELECT</span> * <span>FROM</span> tree <span>WHERE</span> lft BETWEEN <span>2</span><span>AND</span><span>11</span><span>ORDER</span><span>BY</span> lft <span>ASC</span>;</span></code>

剩下的问题如何显示层级的缩进了。
以下是代码:

<code><span><span><?php</span><span><span>function</span><span>display_tree</span><span>(<span>$root</span>)</span> {</span><span>// 得到根节点的左右值</span><span>$result</span> = mysql_query(<span>"
        SELECT lft, rgt
        FROM tree
        WHERE name = '"</span> . <span>$root</span> . <span>"'
        ;"</span>
    );
    <span>$row</span> = mysql_fetch_array(<span>$result</span>);
    <span>// 准备一个空的右值堆栈</span><span>$right</span> = <span>array</span>();
    <span>// 获得根基点的所有子孙节点</span><span>$result</span> = mysql_query(<span>"
        SELECT name, lft, rgt
        FROM tree
        WHERE lft BETWEEN '"</span> . <span>$row</span>[<span>'lft'</span>] . <span>"' AND '"</span> . <span>$row</span>[<span>'rgt'</span>] .<span>"'
        ORDER BY lft ASC
        ;"</span>
    );
    <span>// 显示每一行</span><span>while</span> (<span>$row</span> = mysql_fetch_array(<span>$result</span>)) {
        <span>// only check stack if there is one</span><span>if</span> (count(<span>$right</span>) > <span>0</span>) {
            <span>// 检查我们是否应该将节点移出堆栈</span><span>while</span> (<span>$right</span>[count(<span>$right</span>) - <span>1</span>] < <span>$row</span>[<span>'rgt'</span>]) {
                array_pop(<span>$right</span>);
            }
        }
        <span>// 缩进显示节点的名称</span><span>echo</span> str_repeat(<span>'  '</span>,count(<span>$right</span>)) . <span>$row</span>[<span>'name'</span>] . <span>"\n"</span>;
        <span>// 将这个节点加入到堆栈中</span><span>$right</span>[] = <span>$row</span>[<span>'rgt'</span>];
    }
}
<span>?></span></span></code>

如果你运行一下以上的函数就会得到和递归函数一样的结果。只是我们的这个新的函数可能会更快一些,因为只有2次数据库查询。
要获知一个节点的路径就更简单了,如果我们想知道Cherry 的路径就利用它的左右值4和5来做一个查询。

<code><span>SELECT</span> name <span>FROM</span> tree <span>WHERE</span> lft < <span>4</span><span>AND</span> rgt >; <span>5</span><span>ORDER</span><span>BY</span> lft <span>ASC</span>;</code>

这样就会得到以下的结果:
以下是代码:

<code><span>+------------+</span><span>|    name    |
+------------+</span>
|    Food    |
|    Fruit   |
<span>|    Red     |
+------------+</span></code>

那么某个节点到底有多少子孙节点呢?很简单,子孙总数=(右值-左值-1)/2

<code>descendants = (<span>right</span> – <span>left</span> - <span>1</span>) / <span>2</span></code>

不相信?自己算一算啦。
用这个简单的公式,我们可以很快的算出”Fruit 2-11”节点有4个子孙节点,而”Banana 8-9”节点没有子孙节点,也就是说它不是一个父节点了。
很神奇吧?虽然我已经多次用过这个方法,但是每次这样做的时候还是感到很神奇。
这的确是个很好的办法,但是有什么办法能够帮我们建立这样有左右值的数据表呢?这里再介绍一个函数给大家,这个函数可以将name和parent结构的表自动转换成带有左右值的数据表。
以下是代码:

<code><span><?php</span><span><span>function</span><span>rebuild_tree</span><span>(<span>$parent</span>, <span>$left</span>)</span> {</span><span>// the right value of this node is the left value + 1</span><span>$right</span> = <span>$left</span>+<span>1</span>;
    <span>// get all children of this node</span><span>$result</span> = mysql_query(<span>"
        SELECT name
        FROM tree
        WHERE parent = '"</span> . <span>$parent</span> . <span>"'
        ;"</span>
    );
    <span>while</span> (<span>$row</span> = mysql_fetch_array(<span>$result</span>)) {
        <span>// recursive execution of this function for each</span><span>// child of this node</span><span>// $right is the current right value, which is</span><span>// incremented by the rebuild_tree function</span><span>$right</span> = rebuild_tree(<span>$row</span>[<span>'name'</span>], <span>$right</span>);
    }
    <span>// we've got the left value, and now that we've processed</span><span>// the children of this node we also know the right value</span>
    mysql_query(<span>"
        UPDATE tree
        SET
            lft = '"</span> . <span>$left</span> . <span>"',
            rgt= '"</span> . <span>$right</span> . <span>"'
        WHERE name = '"</span> . <span>$parent</span> . <span>"'
        ;"</span>
    );
    <span>// return the right value of this node + 1</span><span>return</span><span>$right</span> + <span>1</span>;
}
<span>?></span></code>

当然这个函数是一个递归函数,我们需要从根节点开始运行这个函数来重建一个带有左右值的树

<code><span>rebuild_tree(<span>'Food'</span>,<span>1</span>)</span>;</code>

这个函数看上去有些复杂,但是它的作用和手工对表进行编号一样,就是将立体多层结构的转换成一个带有左右值的数据表。

那么对于这样的结构我们该如何增加,更新和删除一个节点呢?
增加一个节点一般有两种方法:
第一种,保留原有的name 和parent结构,用老方法向数据中添加数据,每增加一条数据以后使用rebuild_tree函数对整个结构重新进行一次编号。
第二种,效率更高的办法是改变所有位于新节点右侧的数值。举例来说:我们想增加一种新的水果”Strawberry”(草莓)它将成为”Red”节点的最后一个子节点。首先我们需要为它腾出一些空间。”Red”的右值应当从6改成8,”Yellow 7-10 “的左右值则应当改成 9-12。依次类推我们可以得知,如果要给新的值腾出空间需要给所有左右值大于5的节点 (5 是”Red”最后一个子节点的右值) 加上2。所以我们这样进行数据库操作:

<code><span><span>UPDATE</span> tree <span>SET</span> rgt = rgt + <span>2</span><span>WHERE</span> rgt > <span>5</span>;</span><span><span>UPDATE</span> tree <span>SET</span> lft = lft + <span>2</span><span>WHERE</span> lft > <span>5</span>;</span></code>

这样就为新插入的值腾出了空间,现在可以在腾出的空间里建立一个新的数据节点了, 它的左右值分别是6和7

<code><span><span>INSERT</span><span>INTO</span> tree <span>SET</span> lft=<span>6</span>, rgt=<span>7</span>, name=<span>'Strawberry'</span>;</span></code>

再做一次查询看看吧!怎么样?很快吧。

四、结语

好了,现在你可以用两种不同的方法设计你的多级数据库结构了,采用何种方式完全取决于你个人的判断,但是对于层次多数量大的结构我更喜欢第二种方法。如果查询量较小但是需要频繁添加和更新的数据,则第一种方法更为简便。
另外,如果数据库支持的话 你还可以将rebuild_tree()和 腾出空间的操作写成数据库端的触发器函数, 在插入和更新的时候自动执行, 这样可以得到更好的运行效率, 而且你添加新节点的SQL语句会变得更加简单。

http://www.cnblogs.com/guowei1027/archive/2009/12/14/1623507.html

以上就介绍了无限分类左右值实现算法,包括了方面的内容,希望对PHP教程有兴趣的朋友有所帮助。

声明:
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。