ホームページ >バックエンド開発 >PHPチュートリアル >PHP 無限分類法とコードの分析_PHP チュートリアル
无论你要构建自己的论坛,在你的网站上发布消息还是书写自己的CMS程序,你都会遇到要在数据库中存储层次数据的情况。同时,除非你使用一种像XML的数据库,否则关系数据库中的表都不是层次结构的,他们只是一个平坦的列表。所以你必须找到一种把层次数据库转化的方法。
存储树形结构是一个很常见的问题,他有好几种解决方案。主要有两种方法:邻接列表模型和改进前序遍历树算法
在本文中,我们将探讨这两种保存层次数据的方法。我将举一个在线食品店树形图的例子。这个食品店通过类别、颜色和品种来组织食品。树形图如下:
本文包含了一些代码的例子来演示如何保存和获取数据。我选择PHP来写例子,因为我常用这个语言,而且很多人也都使用或者知道这个语言。你可以很方便地把它们翻译成你自己用的语言。
邻接列表模型(The Adjacency List Model)如你所见,对每个节点保存一个“父”节点。我们可以看到“Pear”是“Green”的一个子节点,而后者又是“Fruit”的子节点,如此类推。 根节点,“Food”,则他的父节点没有值。为了简单,我只用了“title”值来标识每个节点。当然,在实际的数据库中,你要使用数字的ID。
显示树
现在我们已经把树放入数据库中了,得写一个显示函数了。这个函数将从根节点开始——没有父节点的节点——同时要显示这个节点所有的子节点。对于这些子节点,函数也要获取并显示这个子节点的子节点。然后,对于他们的子节点,函数还要再显示所有的子节点,然后依次类推。
也许你已经注意到了,这种函数的描述,有一种普遍的模式。我们可以简单地只写一个函数,用来获得特定节点的子节点。这个函数然后要对每个子节点调用自身来再次显示他们的子节点。这就是“递归”机制,因此称这种方法叫“递归方法”。
要实现整个树,我们只要调用函数时用一个空字符串作为 $parent 和 $level = 0: display_children('',0); 函数返回了我们的食品店的树状图如下:
Food
Fruit
Red
Cherry
Yellow
Banana
Meat
Beef
Pork
注意如果你只想看一个子树,你可以告诉函数从另一个节点开始。例如,要显示“Fruit”子树,你只要display_children('Fruit',0);
The Path to a Node节点的路径
利用差不多的函数,我们也可以查询某个节点的路径如果你只知道这个节点的名字或者ID。例如,“Cherry”的路径是“Food”> “Fruit”>“Red”。要获得这个路径,我们的函数要获得这个路径,这个函数必须从最深的层次开始:“Cheery”。但后查找这个节点的父 节点,并添加到路径中。在我们的例子中,这个父节点是“Red”。如果我们知道“Red”是“Cherry”的父节点。
这个函数现在返回了指定节点的路径。他把路径作为数组返回,这样我们可以使用print_r(get_path('Cherry')); 来显示,其结果是:
Array
(
[0] => Food
[1] => Fruit
[2] => Red)
不足
正如我们所见,这确实是一个很好的方法。他很容易理解,同时代码也很简单。但是邻接列表模型的缺点在哪里呢?在大多数编程语言中,他运行很慢,效率很差。这主要是“递归”造成的。我们每次查询节点都要访问数据库。
每次数据库查询都要花费一些时间,这让函数处理庞大的树时会十分慢。
造成这个函数不是太快的第二个原因可能是你使用的语言。不像Lisp这类语言,大多数语言不是针对递归函数设计的。对于每个节点,函数都要调用他自 己,产生新的实例。这样,对于一个4层的树,你可能同时要运行4个函数副本。对于每个函数都要占用一块内存并且需要一定的时间初始化,这样处理大树时递归 就很慢了。
改进前序遍历树我们先把树按照水平方式摆开。从根节点开始(“Food”),然后他的左边写上1。然后按照树的顺序(从上到下)给“Fruit”的左边写上2。这 样,你沿着树的边界走啊走(这就是“遍历”),然后同时在每个节点的左边和右边写上数字。最后,我们回到了根节点“Food”在右边写上18。下面是标上 了数字的树,同时把遍历的顺序用箭头标出来了。
我们称这些数字为左值和右值(如,“Food”的左值是1,右值是18)。正如你所见,这些数字按时了每个节点之间的关系。因为“Red”有3和6 两个值,所以,它是有拥有1-18值的“Food”节点的后续。同样的,我们可以推断所有左值大于2并且右值小于11的节点,都是有2-11的 “Food”节点的后续。这样,树的结构就通过左值和右值储存下来了。这种数遍整棵树算节点的方法叫做“改进前序遍历树”算法。
在继续前,我们先看看我们的表格里的这些值:
注意单词“left”和“right”在SQL中有特殊的含义。因此,我们只能用“lft”和“rgt”来表示这两个列。(译注——其实Mysql 中可以用“`”来表示,如“`left`”,MSSQL中可以用“[]”括出,如“[left]”,这样就不会和关键词冲突了。)同样注意这里我们已经不需要“parent”列了。我们只需要使用lft和rgt就可以存储树的结构。
获取树
如果你要通过左值和右值来显示这个树的话,你要首先标识出你要获取的那些节点。例如,如果你想获得“Fruit”子树,你要选择那些左值在2到11的节点。用SQL语句表达:
SELECT * FROM tree WHERE lft BETWEEN 2 AND 11;
这个会返回:
好吧,现在整个树都在一个查询中了。现在就要像前面的递归函数那样显示这个树,我们要加入一个ORDER BY子句在这个查询中。如果你从表中添加和删除行,你的表可能就顺序不对了,我们因此需要按照他们的左值来进行排序。
SELECT * FROM tree WHERE lft BETWEEN 2 AND 11 ORDER BY lft ASC;
就只剩下缩进的问题了。
要显示树状结构,子节点应该比他们的父节点稍微缩进一些。我们可以通过保存一个右值的一个栈。每次你从一个节点的子节点开始时,你把这个节点的右值 添加到栈中。你也知道子节点的右值都比父节点的右值小,这样通过比较当前节点和栈中的前一个节点的右值,你可以判断你是不是在显示这个父节点的子节点。当 你显示完这个节点,你就要把他的右值从栈中删除。要获得当前节点的层数,只要数一下栈中的元素。
如果运行这段代码,你可以获得和上一部分讨论的递归函数一样的结果。而这个函数可能会更快一点:他不采用递归而且只是用了两个查询
节点的路径
有了新的算法,我们还要另找一种新的方法来获得指定节点的路径。这样,我们就需要这个节点的祖先的一个列表。
由于新的表结构,这不需要花太多功夫。你可以看一下,例如,4-5的“Cherry”节点,你会发现祖先的左值都小于4,同时右值都大于5。这样,我们就可以使用下面这个查询:
SELECT title FROM tree WHERE lft < 4 AND rgt > 5 ORDER BY lft ASC;
注意,就像前面的查询一样,我们必须使用一个ORDER BY子句来对节点排序。这个查询将返回:
+-------+
| title |
+-------+
| Food |
| Fruit |
| Red |
+-------+
我们现在只要把各行连起来,就可以得到“Cherry”的路径了。
有多少个后续节点?How Many Descendants
如果你给我一个节点的左值和右值,我就可以告诉你他有多少个后续节点,只要利用一点点数学知识。
因为每个后续节点依次会对这个节点的右值增加2,所以后续节点的数量可以这样计算:
descendants = (right – left - 1) / 2
利用这个简单的公式,我可以立刻告诉你2-11的“Fruit”节点有4个后续节点,8-9的“Banana”节点只是1个子节点,而不是父节点。
自动化树遍历
现在你对这个表做一些事情,我们应该学习如何自动的建立表了。这是一个不错的练习,首先用一个小的树,我们也需要一个脚本来帮我们完成对节点的计数。
让我们先写一个脚本用来把一个邻接列表转换成前序遍历树表格。
这是一个递归函数。你要从rebuild_tree('Food',1); 开始,这个函数就会获取所有的“Food”节点的子节点。
如果没有子节点,他就直接设置它的左值和右值。左值已经给出了,1,右值则是左值加1。如果有子节点,函数重复并且返回最后一个右值。这个右值用来作为“Food”的右值。
递归让这个函数有点复杂难于理解。然而,这个函数确实得到了同样的结果。他沿着树走,添加每一个他看见的节点。你运行了这个函数之后,你会发现左值和右值和预期的是一样的(一个快速检验的方法:根节点的右值应该是节点数量的两倍)。
添加一个节点
我们如何给这棵树添加一个节点?有两种方式:在表中保留“parent”列并且重新运行rebuild_tree() 函数——一个很简单但却不是很优雅的函数;或者你可以更新所有新节点右边的节点的左值和右值。
第一个想法比较简单。你使用邻接列表方法来更新,同时使用改进前序遍历树来查询。如果你想添加一个新的节点,你只需要把节点插入表格,并且设置好parent列。然后,你只需要重新运行rebuild_tree() 函数。这做起来很简单,但是对大的树效率不高。
第二种添加和删除节点的方法是更新新节点右边的所有节点。让我们看一下例子。我们要添加一种新的水果——“Strawberry”,作为“Red” 的最后一个子节点。首先,我们要腾出一个空间。“Red”的右值要从6变成8,7-10的“Yellow”节点要变成9-12,如此类推。更新“Red” 节点意味着我们要把所有左值和右值大于5的节点加上2。
次のクエリを使用します:
UPDATE ツリー SET rgt=rgt+2 WHERE rgt>5;
UPDATE ツリー SET lft=lft+2 WHERE lft>5;
これで、新しいノードを追加できます。この新しい空間を埋めるのが「Strawberry」です。このノードの左側の値は 6、右側の値は 7 です。
INSERT INTO Tree SET lft=6, rgt=7, title='Strawberry';
display_tree() 関数を実行すると、新しい「Strawberry」ノードがツリーに正常に挿入されたことがわかります。
フルーツ
赤
チェリー
イチゴ
黄色
バナナ
肉
牛肉
豚肉
欠点
まず第一に、改良されたプリオーダートラバーサルツリーアルゴリズムは理解するのが難しいようです。確かに、隣接リスト方式ほど単純ではありません。ただし、左辺値と右辺値のプロパティに慣れると、この手法を使用してフロントエンド リストで実行できるすべてのことを実行しながら、事前注文ツリーの走査アルゴリズムを高速化できることがわかります。もちろん、ツリーの更新には多くのクエリが必要で少し時間がかかりますが、ノードの取得は 1 つのクエリだけで実行できます。
最終ポイント: すでに述べたように、ノードを参照するにはノードのタイトルを使用することをお勧めします。データベース標準化の基本ルールに従う必要があります。例が読みにくくなるため、数値識別子は使用しませんでした。
アルゴリズム 3