Raspberry Piを使って会話ロボットを実装してみました
最近、Raspberry Piを使って人と会話できるロボットを実装してみましたので簡単に紹介します。Raspberry Pi は、世界で最も人気のあるマイクロコンピューターのマザーボードであり、オープンソース ハードウェアのリーダーです。学生のコンピューター プログラミング教育用に設計されており、サイズはクレジット カードほどで、手頃な価格です。 Linux (debian) などのオペレーティング システムをサポートします。最も重要なことは、情報が完全であり、コミュニティが活発であることです。
私はRaspberry Pi B+バージョンを使用しています。基本構成はBroadcom BCM2836プロセッサ、4コア900Mクロック速度、1G RAMです。
私の目標は、人と会話できるロボットを作ることですが、そのためにはロボットに入力デバイスと出力デバイスが必要です。入力デバイスはマイクで、出力は HDMI、ヘッドフォン、またはスピーカーです。ここではスピーカーを使用しました。以下は私のRaspberry Piの写真です。 4 つの USB インターフェイスは、ワイヤレス ネットワーク カード、ワイヤレス キーボード、マイク、およびオーディオ電源に接続されています。

ロボットの会話は、聞く、考える、話すの 3 つの部分に分けることができます。
「聞く」とは、人の話を録音し、言葉に変換することです。
「考える」とは、異なるインプットに基づいて異なるアウトプットを与えることを意味します。たとえば、相手が「もうこんな時間です」と言ってきたら、「北京時間××時××分です」と返すことができます。
「話す」とは、テキストを音声に変換して再生することです。
これらの 3 つの部分には、音声認識、音声合成、人工知能、その他のテクノロジーが多く含まれており、研究には多大な時間と労力が必要です。幸いなことに、一部の企業は顧客が使用できるインターフェースを公開しています。ここではBaiduのAPIを選択しました。これら 3 つの部分の実装については以下で説明します。
「聞く」
まず最初に、arecord ツールを使用して人の発言を録音します。コマンドは次のとおりです:
- arecord -D "plughw:1" -f S16_LE -r 16000 test.wav
次に、音声をテキストに変換する必要があります。つまり、Baidu の音声オープン プラットフォームは無料のサービスを提供し、REST API をサポートしています。ドキュメントについては、http://yuyin.baidu.com/docs/ を参照してください。 asr/57
プロセスは基本的にトークンを取得し、認識する必要がある音声情報、音声データ、トークンなどを Baidu の音声認識サーバーに送信すると、対応するテキストを取得できます。サーバーは REST API をサポートしているため、任意の言語を使用してクライアント コードを実装できます。ここでは python を使用します
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li># coding: utf-8<br /> </li><li><br /></li><li>import urllib.request<br /></li><li>import json<br /></li><li>import base64<br /></li><li>import sys<br /></li><li><br /></li><li>def get_access_token():<br /></li><li>url = "https://openapi.baidu.com/oauth/2.0/token"<br /></li><li>grant_type = "client_credentials"<br /></li><li>client_id = "xxxxxxxxxxxxxxxxxx"<br /></li><li>client_secret = "xxxxxxxxxxxxxxxxxxxxxx"<br /></li><li><br /></li><li>url = url + "?" + "grant_type=" + grant_type + "&" + "client_id=" + client_id + "&" + "client_secret=" + client_secret<br /></li><li><br /></li><li>resp = urllib.request.urlopen(url).read()<br /></li><li>data = json.loads(resp.decode("utf-8"))<br /></li><li>return data["access_token"]<br /></li><li><br /></li><li><br /></li><li>def baidu_asr(data, id, token):<br /></li><li>speech_data = base64.b64encode(data).decode("utf-8")<br /></li><li>speech_length = len(data)<br /></li><li><br /></li><li>post_data = {<br /></li><li>"format" : "wav",<br /></li><li>"rate" : 16000,<br /></li><li>"channel" : 1,<br /></li><li>"cuid" : id,<br /></li><li>"token" : token,<br /></li><li>"speech" : speech_data,<br /></li><li>"len" : speech_length<br /></li><li>}<br /></li><li><br /></li><li>url = "http://vop.baidu.com/server_api"<br /></li><li>json_data = json.dumps(post_data).encode("utf-8")<br /></li><li>json_length = len(json_data)<br /></li><li>#print(json_data)<br /></li><li><br /></li><li>req = urllib.request.Request(url, data = json_data)<br /></li><li>req.add_header("Content-Type", "application/json")<br /></li><li>req.add_header("Content-Length", json_length)<br /></li><li><br /></li><li>print("asr start request\n")<br /></li><li>resp = urllib.request.urlopen(req)<br /></li><li>print("asr finish request\n")<br /></li><li>resp = resp.read()<br /></li><li>resp_data = json.loads(resp.decode("utf-8"))<br /></li><li>if resp_data["err_no"] == 0:<br /></li><li>return resp_data["result"]<br /></li><li>else:<br /></li><li>print(resp_data)<br /></li><li>return None<br /></li><li><br /></li><li>def asr_main(filename):<br /></li><li>f = open(filename, "rb")<br /></li><li>audio_data = f.read()<br /></li><li>f.close()<br /></li><li><br /></li><li>#token = get_access_token()<br /></li><li>token = "xxxxxxxxxxxxxxxxxx"<br /></li><li>uuid = "xxxx"<br /></li><li>resp = baidu_asr(audio_data, uuid, token)<br /></li><li>print(resp[0])<br /></li><li>return resp[0] </li></ol>
「思考」
ここでは、Baidu API ストアの Turing ロボットを使用しました。そのドキュメントは次の場所にあります: http://apistore.baidu.com/apiworks/servicedetail/736.html
その使用方法は非常に簡単なので、ここでは詳しく説明しません。コードは次のとおりです:
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li>import urllib.request<br /> </li><li>import sys<br /></li><li>import json<br /></li><li><br /></li><li>def robot_main(words):<br /></li><li>url = "http://apis.baidu.com/turing/turing/turing?"<br /></li><li><br /></li><li>key = "879a6cb3afb84dbf4fc84a1df2ab7319"<br /></li><li>userid = "1000"<br /></li><li><br /></li><li>words = urllib.parse.quote(words)<br /></li><li>url = url + "key=" + key + "&info=" + words + "&userid=" + userid<br /></li><li><br /></li><li>req = urllib.request.Request(url)<br /></li><li>req.add_header("apikey", "xxxxxxxxxxxxxxxxxxxxxxxxxx")<br /></li><li><br /></li><li>print("robot start request")<br /></li><li>resp = urllib.request.urlopen(req)<br /></li><li>print("robot stop request")<br /></li><li>content = resp.read()<br /></li><li>if content:<br /></li><li>data = json.loads(content.decode("utf-8"))<br /></li><li>print(data["text"])<br /></li><li>return data["text"]<br /></li><li>else:<br /></li><li>return None</li></ol>
「言う」
まず、テキストを音声、つまり音声合成 (tts) に変換する必要があります。次にサウンドを再生します。
Baidu の音声オープン プラットフォームは tts インターフェイスを提供し、男性と女性の声、イントネーション、話す速度、音量を設定できます。サーバーは音声データを mp3 形式で返します。データをバイナリ形式でファイルに書き込みます。
詳細については、http://yuyin.baidu.com/docs/tts/136 を参照してください。
コードは次のとおりです:
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li># coding: utf-8<br /> </li><li><br /></li><li>import urllib.request<br /></li><li>import json<br /></li><li>import sys<br /></li><li><br /></li><li>def baidu_tts_by_post(data, id, token):<br /></li><li>post_data = {<br /></li><li>"tex" : data,<br /></li><li>"lan" : "zh",<br /></li><li>"ctp" : 1,<br /></li><li>"cuid" : id,<br /></li><li>"tok" : token,<br /></li><li>}<br /></li><li><br /></li><li>url = "http://tsn.baidu.com/text2audio"<br /></li><li>post_data = urllib.parse.urlencode(post_data).encode('utf-8')<br /></li><li>#print(post_data)<br /></li><li>req = urllib.request.Request(url, data = post_data)<br /></li><li><br /></li><li>print("tts start request")<br /></li><li>resp = urllib.request.urlopen(req)<br /></li><li>print("tts finish request")<br /></li><li>resp = resp.read()<br /></li><li>return resp<br /></li><li><br /></li><li>def tts_main(filename, words):<br /></li><li>token = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"<br /></li><li>text = urllib.parse.quote(words)<br /></li><li>uuid = "xxxx"<br /></li><li>resp = baidu_tts_by_post(text, uuid, token)<br /></li><li><br /></li><li>f = open("test.mp3", "wb")<br /></li><li>f.write(resp)<br /></li><li>f.close() </li></ol>
オーディオ ファイルを取得した後、mpg123 プレーヤーを使用して再生できます。
- mpg123 test.mp3
統合
最後に、これら 3 つの部分を結合します。
まず、次のように Python 関連のコードを main.py に統合できます:
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li>import asr<br /> </li><li>import tts<br /></li><li>import robot<br /></li><li><br /></li><li>words = asr.asr_main("test.wav")<br /></li><li>new_words = robot.robot_main(words)<br /></li><li>tts.tts_main("test.mp3", new_words) </li></ol>
次に、スクリプトを使用して関連ツールを呼び出します:
- #! /bin/bash
-
arecord -D "plughw:1" - f S16_LE -r 16000 test.wav
さて、これでロボットと会話できるようになりました。スクリプトを実行し、マイクに向かって何かを言ってから Ctrl+C を押すと、ロボットが応答します。

データベースストレージセッションを使用することの主な利点には、持続性、スケーラビリティ、セキュリティが含まれます。 1。永続性:サーバーが再起動しても、セッションデータは変更されないままになります。 2。スケーラビリティ:分散システムに適用され、セッションデータが複数のサーバー間で同期されるようにします。 3。セキュリティ:データベースは、機密情報を保護するための暗号化されたストレージを提供します。

PHPでのカスタムセッション処理の実装は、SessionHandlerInterfaceインターフェイスを実装することで実行できます。具体的な手順には、次のものが含まれます。1)CussentsessionHandlerなどのSessionHandlerInterfaceを実装するクラスの作成。 2)セッションデータのライフサイクルとストレージ方法を定義するためのインターフェイス(オープン、クローズ、読み取り、書き込み、破壊、GCなど)の書き換え方法。 3)PHPスクリプトでカスタムセッションプロセッサを登録し、セッションを開始します。これにより、データをMySQLやRedisなどのメディアに保存して、パフォーマンス、セキュリティ、スケーラビリティを改善できます。

SessionIDは、ユーザーセッションのステータスを追跡するためにWebアプリケーションで使用されるメカニズムです。 1.ユーザーとサーバー間の複数のインタラクション中にユーザーのID情報を維持するために使用されるランダムに生成された文字列です。 2。サーバーは、ユーザーの複数のリクエストでこれらの要求を識別および関連付けるのに役立つCookieまたはURLパラメーターを介してクライアントに生成および送信します。 3.生成は通常、ランダムアルゴリズムを使用して、一意性と予測不可能性を確保します。 4.実際の開発では、Redisなどのメモリ内データベースを使用してセッションデータを保存してパフォーマンスとセキュリティを改善できます。

APIなどのステートレス環境でのセッションの管理は、JWTまたはCookieを使用して達成できます。 1。JWTは、無国籍とスケーラビリティに適していますが、ビッグデータに関してはサイズが大きいです。 2.cookiesはより伝統的で実装が簡単ですが、セキュリティを確保するために慎重に構成する必要があります。

セッション関連のXSS攻撃からアプリケーションを保護するには、次の測定が必要です。1。セッションCookieを保護するためにHTTPonlyとセキュアフラグを設定します。 2。すべてのユーザー入力のエクスポートコード。 3.コンテンツセキュリティポリシー(CSP)を実装して、スクリプトソースを制限します。これらのポリシーを通じて、セッション関連のXSS攻撃を効果的に保護し、ユーザーデータを確保できます。

PHPセッションのパフォーマンスを最適化する方法は次のとおりです。1。遅延セッション開始、2。データベースを使用してセッションを保存します。これらの戦略は、高い並行性環境でのアプリケーションの効率を大幅に改善できます。

thesession.gc_maxlifettinginttinginphpdethinesthelifsessessiondata、setinseconds.1)it'sconfiguredinphp.iniorviaini_set()。 2)AbalanceSneededToAvoidPerformanceIssues andunexpectedLogouts.3)php'sgarbagecollectionisisprobabilistic、影響を受けたBygc_probabi

PHPでは、session_name()関数を使用してセッション名を構成できます。特定の手順は次のとおりです。1。session_name()関数を使用して、session_name( "my_session")などのセッション名を設定します。 2。セッション名を設定した後、session_start()を呼び出してセッションを開始します。セッション名の構成は、複数のアプリケーション間のセッションデータの競合を回避し、セキュリティを強化することができますが、セッション名の一意性、セキュリティ、長さ、設定タイミングに注意してください。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)
