ホームページ >バックエンド開発 >PHPチュートリアル >PHP カーネル探索変数 (4) - 配列操作

PHP カーネル探索変数 (4) - 配列操作

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBオリジナル
2016-06-23 13:42:481030ブラウズ

前のセクション (PHP カーネル探索変数 (3) - ハッシュ テーブル) では、配列が実際には PHP の下部にある HashTable (競合を解決するためのリンク方法) であることはすでにわかりました。この記事では、最も一般的に使用される関数を紹介します。系列 - 配列 操作に関連する関数をさらにトレースします。

この記事の主な内容:

  1. PHPで提供される配列演算関数
  2. 配列演算関数の実装
  3. まとめ 参考文献

1. PHPで提供される配列演算関数

配列は、 PHP の最も重要な部分 最も広く使用されているデータ構造の 1 つであり、このため、PHP は開発者に豊富な配列操作関数を提供します (http://cn2.php.net/manual/en/ref.array.php を参照) )、約 80 これは、ほとんどの配列操作には十分です。配列操作のカテゴリに従ってこれらの関数を分類すると、次のカテゴリに大別できます (不完全な分類):

  1. 配列トラバーサル関連関数: prev、next、current、end、reset、 each など
  2. 配列ソート関連関数:sort、rsort、asort、arsort、ksort、krsort、uasort、uksort
  3. など
  4. 配列検索関連:in_array、array_search、array_key_existsなど
  5. 配列の分割と結合関連:array_slice、array_splice 、implode、array_chunk、array_combine など
  6. 配列の共通部分と差分: array_merge、array_diff、array_diff_*、array_intersect、array_intersect_* など
  7. スタック/キュー コンテナーとしての配列: array_push、array_pop、array_shift など
  8. その他の配列操作: array_fill、array_flip、array_sum、array_reverse など

PHP では、配列関連の演算には次のような特徴があります:

  1. 配列演算関数は expansion (ext/standard/array.c) の形式で提供されます。 、そのため、拡張された MINIT、RINIT、RSHUTDOWN、MSHUTDOWN 待機プロセスも発生します。
  2. 最下位レベルでは、PHP 関数を定義する方法は PHP_FUNCTION(function_name) です。たとえば、配列演算関数 array_merge は、最下位レベルでは PHP_FUNCTION(array_merge) です
  3. 配列の基礎となる実装は HashTable であるため、ほとんどの場合、配列に対する操作は実際には HashTable 用であり、操作は HashTable API を通じて実装されます。

次に、いくつかの特定の関数を例として取り上げ、PHP での配列関数の実装を詳しく調べます。

2. 配列演算の実装

配列演算は実際には HashTable 上の関連演算であるため、参考のために HashTable の構造と構造図をもう一度掲載します。

HashTable 構造:

typedef struct _hashtable {    uint nTableSize;    uint nTableMask;    uint nNumOfElements;    ulong nNextFreeElement;    Bucket *pInternalPointer;   /* Used for element traversal */    Bucket *pListHead;    Bucket *pListTail;    Bucket **arBuckets;    dtor_func_t pDestructor;    zend_bool persistent;    unsigned char nApplyCount;    zend_bool bApplyProtection;#if ZEND_DEBUG    int inconsistent;#endif} HashTable;

対応する構造図:

次に、具体的な操作の実装を確認するために、例としていくつかの配列操作関数を取り上げます。

1. 配列の定義と初期化

在高级语言中,一条简单的语句往往需要在底层中经过很多的操作步骤才能实现,对于数组的操作亦是如此,例如:$arr = array(1, 2, 3);这样的赋值语句,实际上会经历数组初始化(array_init)、添加数组元素(ADD_ARRAY_ELEMENT)、赋值这些步骤才会实现。
(1)数组的初始化这是通过array_init来实现的,实际上是调用_array_init来完成数组的初始化:

ZEND_API int _array_init(zval *arg, uint size ZEND_FILE_LINE_DC){    ALLOC_HASHTABLE_REL(Z_ARRVAL_P(arg));        _zend_hash_init(Z_ARRVAL_P(arg), size, NULL, ZVAL_PTR_DTOR, 0 ZEND_FILE_LINE_RELAY_CC);    Z_TYPE_P(arg) = IS_ARRAY;    return SUCCESS;}

ここで、zval *arg は初期化する配列、最初の文 ALLOC_HASHTABLE_P(arg));実は拡張後、次のようになります:

(*arg).value.ht = (HashTable *) emalloc_rel(sizeof(HashTable));

次に、HashTable が _zend_hash_init 関数を通じて初期化され、引数の zval タイプが IS_ARRAY に設定されます。

1

Z_TYPE_P(arg) = IS_ARRAY;

(2) zend_hash_init は前のセクションで紹介されているため、ここでは繰り返しません

2. PHP では、使用できますprev、Next、current などにより、配列へのアクセスが完了します。例:

$traverse = array('one', 'after', 'another'); $cur = current($traverse);echo "cur:", $cur.PHP_EOL; $next = next($traverse);echo "next: ", $next.PHP_EOL; $nextnext = next($traverse);echo "nextnext: ", $nextnext.PHP_EOL; $prev = prev($traverse);echo "prev: ", $prev.PHP_EOL;

HashTable 構造には、配列のアクセス ポインターを制御するメンバー pInternalPointer があることがわかります。 prev 関数を例に取ると、HashTable トラバーサルは次のように実装されます: (1) アクセス ポインターを 1 ステップ移動します

これは、zend_hash_move_backwards(array); によって実現されます。具体的には、まず、現在の位置またはポインターを見つけます。配列:

1 HashPosition *current = pos : &ht->pInternalPointer

然后访问这个指针的pListLast找到上一个元素:

1

*current = (*current)->pListLast;

移动指针的过程如下(可以看出,在不传递pos参数时,实际上移动的是ht-> pInternalPointer这个指针):

ZEND_API int zend_hash_move_backwards_ex(HashTable *ht, HashPosition *pos){        HashPosition *current = pos ? pos : &ht->pInternalPointer;    IS_CONSISTENT(ht);      if (*current) {        *current = (*current)->pListLast;        return SUCCESS;    } else        return FAILURE;}

(2)如果需要返回值,由于访问指针已经移动到了适当的位置,则直接获取当前指针指向的元素:

if (return_value_used) {  if (zend_hash_get_current_data(array, (void **) &entry) == FAILURE) {    RETURN_FALSE;  }  RETURN_ZVAL(*entry, 1, 0);}

获取当前指针指向的元素是通过zend_hash_get_current_data来实现的:

#define zend_hash_get_current_data(ht, pData) \    zend_hash_get_current_data_ex(ht, pData, NULL) ZEND_API int zend_hash_get_current_data_ex(HashTable *ht, void **pData, HashPosition *pos){        Bucket *p;         /* 获取当前指针 */    p = pos ? (*pos) : ht->pInternalPointer;    IS_CONSISTENT(ht);     if (p) {        *pData = p->pData;        return SUCCESS;    } else {        return FAILURE;    }}

知道了prev函数的原理,我们不难想象next, current, reset等函数的实现机制。

prev函数的源码:

PHP_FUNCTION(prev){    HashTable *array;    zval **entry;     if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "H", &array) == FAILURE) {        return;    }     zend_hash_move_backwards(array);     if (return_value_used) {        if (zend_hash_get_current_data(array, (void **) &entry) == FAILURE) {            RETURN_FALSE;        }        RETURN_ZVAL(*entry, 1, 0);    }}

3.  数组排序 asort,arsort,ksort等

php中提供了大量的函数用于数组的排序,如用于普通排序的sort函数,用于逆序排序的rsort函数,用于按照键名排序的函数ksort和krsort, 用于自定义比较函数的usort和uksort等,可以说非常丰富。我们以sort函数的实现为例,探索PHP中排序算法的实现。

sort函数的签名为:

bool sort ( array &$array [, int $sort_flags = SORT_REGULAR ] )

其中sort_flags会影响排序的结果,该值可以是:SORT_REGULAR,SORT_NUMERIC,SORT_STRING,SORT_LOCALE_STRING,SORT_NATURAL等

( http://cn2.php.net/manual/zh/function.sort.php )

sort函数的实现过程如下:

(1)由于sort_flags会影响比较函数的行为,因此首先需要根据sort_type确定用于元素比较的函数(自然排序,整数排序,还是字符串排序,区分大小写还是不区分)。这是通过php_set_compare_func来实现的:

static void php_set_compare_func(int sort_type TSRMLS_DC){         switch (sort_type & ~PHP_SORT_FLAG_CASE) {        case PHP_SORT_NUMERIC:            ARRAYG(compare_func) = numeric_compare_function;            break;         case PHP_SORT_STRING:            ARRAYG(compare_func) = sort_type & PHP_SORT_FLAG_CASE ? <br>                 string_case_compare_function : string_compare_function;            break;         case PHP_SORT_NATURAL:            ARRAYG(compare_func) = sort_type & PHP_SORT_FLAG_CASE ? <br>                 string_natural_case_compare_function : string_natural_compa     re_function;            break; #if HAVE_STRCOLL        case PHP_SORT_LOCALE_STRING:            ARRAYG(compare_func) = string_locale_compare_function;            break;#endif         case PHP_SORT_REGULAR:        default:            ARRAYG(compare_func) = compare_function;//默认使用compare_function            break;    }}

switch (sort_type & ~PHP_SORT_FLAG_CASE)这是什么意思呢?首先,PHP针对排序设置的sort_type常量有:

#define PHP_SORT_REGULAR                0#define PHP_SORT_NUMERIC                1#define PHP_SORT_STRING                 2#define PHP_SORT_DESC                   3#define PHP_SORT_ASC                    4#define PHP_SORT_LOCALE_STRING          5#define PHP_SORT_NATURAL                6#define PHP_SORT_FLAG_CASE              8

其次,sort函数的第二个参数可以设置为SORT_NATURAL | SORT_FLAG_CASE或者SORT_STRING | SORT_FLAG_CASE. 因此sort_type & ~PHP_SORT_FLAG_CASE的含义为:排除PHP_SORT_FLAG_CASE标志之后的值,得到的值可以是PHP_SORT_NUMERIC,PHP_SORT_STRING,PHP_SORT_NATURAL,PHP_SORT_LOCALE_STRING,PHP_SORT_REGULAR。而在PHP_SORT_STRING和PHP_SORT_NATURAL中,还需要通过sort_type & PHP_SORT_FLAG_CASE来判断是否是不区分大小写的排序(即是否使用了SORT_FLAG_CASE标志)。

(2) 设置完sort_type之后,调用zend_hash_sort完成实际的排序:

1

zend_hash_sort(Z_ARRVAL_P(array), zend_qsort, php_array_data_compare, 1 TSRMLS_CC);

zend_hash_sort的函数签名是:

ZEND_API int zend_hash_sort(HashTable *ht, sort_func_t sort_func, compare_func_t compar, int renumber TSRMLS_DC);

其中:

  1. HashTable * ht  指向HashTable的指针
  2. Sort_func_t sort_func  用于排序的函数,因此,实际上是调用zend_qsort来完成排序。
  3. Compare_func_t compar: 用于排序的比较函数,前一步骤已经设置。

我们首先跟踪zend_hash_sort的基本过程,而后再追踪zend_qsort的具体实现。

由于数组排序并不会改变数组中的元素,而只是改变了数组中元素的位置,因而,对底层而言,实际上只是对全局的双链表进行排序,这显然需要n个额外的空间(n是数组元素个数):

1

arTmp = (Bucket **) pemalloc(ht->nNumOfElements * sizeof (Bucket *), ht->persistent);

然后遍历双链表,将双链表的每个节点存储到临时空间(c数组,每个元素是个bucket *)中:

p = ht->pListHead;i = 0;while (p) {    arTmp[i] = p;    p = p->pListNext;    i++;}

现在,可以调用排序函数对数组进行排序了:

1

(*sort_func)(( void *) arTmp, i, sizeof (Bucket *), compar TSRMLS_CC);

实际上是:

zend_qsort((void *) arTmp, i, sizeof(Bucket *), compar TSRMLS_CC);

排序之后,双链表中节点的位置发生了变化,因而需要调整指针的指向。首先调整pListHead,并设置pListTail为NULL:

1

2

ht->pListHead = arTmp[0];

ht->pListTail = NULL;

然后遍历数组,分别设置每一个节点的pListLast和pListNext:

arTmp[0]->pListLast = NULL;if (i > 1) {    arTmp[0]->pListNext = arTmp[1];    for (j = 1; j < i-1; j++) {        arTmp[j]->pListLast = arTmp[j-1];        arTmp[j]->pListNext = arTmp[j+1];    }    arTmp[j]->pListLast = arTmp[j-1];    arTmp[j]->pListNext = NULL;} else {    arTmp[0]->pListNext = NULL;}

最后设置HashTable的pListTail:

1

ht->pListTail = arTmp[i-1];

排序过程如下所示:

 

排序之后,调整指针走向之后的HashTable:

 

现在,已经知道zend_hash_sort的基本过程了,我们接着跟踪一下zend_qsort的实现(函数位于Zend/zend_qsort.c),该函数的签名为:

ZEND_API void zend_qsort(void *base, size_t nmemb, size_t siz, compare_func_t compare TSRMLS_DC);

这实际上是Zend实现的快速排序算法,主要包括两个部分:

1. _zend_qsort_swap(void *a, void *b, size_t siz) 用于交换任意类型的两个值,与我们经常使用的swap(int *a ,int *b), 或者swap(char *a, char *b), _zend_qsort_swap有更好的通用性,因而它的实现也略微复杂, 具体交换过程为:

(1) . 以sizeof(int)为步长, 交换指针指向的值:

for (i = sizeof(int); i <= siz; i += sizeof(int)) {    t_i = *tmp_a_int;    *tmp_a_int++ = *tmp_b_int;    *tmp_b_int++ = t_i;}

这个循环执行完毕后,有两种可能的情况:一种是siz刚好是sizeof(int)的整倍数,那么交换就已经完成了,因为指针a和指针b指向的内存空间的值已经完全得到了交换。另一种情况是, siz并不是sizeof(int)的整倍数,那么实际上上述交换步骤多交换了一些字节的值(例如对于sizeof(int)=4的情况,可能多交换了1,2,3个字节的内存的值),那么对于这多交换出来的一部分,还需要交换回去。怎么做呢?

(2). 使用char指针一个一个字节的交换:

tmp_a_char = (char *) tmp_a_int;tmp_b_char = (char *) tmp_b_int; for (i = i - sizeof(int) + 1; i <= siz; ++i) {//i控制交换次数    t_c = *tmp_a_char;    *tmp_a_char++ = *tmp_b_char;    *tmp_b_char++ = t_c;}

这样就完成了交换。

2. zend_qsort(void *base, size_t nmemb, size_t siz, compare_func_t compare TSRMLS_DC). 快速排序算法,与常见的快速排序算法不同,这是非递归版本的快速排序。算法的基本思想是:使用QSORT_STACK_SIZE大小的(实际上是数组,不过每次都取数组的末尾元素,当做栈使用)存储快排的开始索引和结束索引(指针),从而将递归的快排过程转换为非递归的。

综上,我们可以得出PHP排序函数的一般特点:

  a. 需要额外的空间,空间复杂度是O(n), 因而应该尽量避免对很大的数组排序.

  b. 底层使用快速排序,平均时间复杂度是O(n*lgn)

zend_qsort的 实现代码(有兴趣的童鞋可以研究一下实现细节):

ZEND_API void zend_qsort(void *base, size_t nmemb, size_t siz, compare_func_t compare TSRMLS_DC){    /* 存储开始和结束指针的栈 */    void           *begin_stack[QSORT_STACK_SIZE];    void           *end_stack[QSORT_STACK_SIZE];    register char  *begin;    register char  *end;    register char  *seg1;    register char  *seg2;         /* partition index */    register char  *seg2p;    register int    loop;         /* pivot index */    uint            offset;         begin_stack[0] = (char *) base;    end_stack[0]   = (char *) base + ((nmemb - 1) * siz);     for (loop = 0; loop >= 0; --loop) {        begin = begin_stack[loop];        end   = end_stack[loop];                 /* partition的过程 */        while (begin < end) {          offset = (end - begin) >> 1;          _zend_qsort_swap(begin, begin + (offset - (offset % siz)), siz);           seg1 = begin + siz;          seg2 = end;           while (1) {            /* 从左向右找 */            for (; seg1 < seg2 && compare(begin, seg1 TSRMLS_CC) > 0;               seg1 += siz);                               /* 从右向左找 */              for (; seg2 >= seg1 && compare(seg2, begin TSRMLS_CC) > 0;                seg2 -= siz);                               if (seg1 >= seg2)                break;                               /* 交换seg1和seg2指向的值 */              _zend_qsort_swap(seg1, seg2, siz);                               /* 指针移动,每次都是siz步长 */              seg1 += siz;              seg2 -= siz;            }             _zend_qsort_swap(begin, seg2, siz);             seg2p = seg2;                         /* 右半部分 */            if ((seg2p - begin) <= (end - seg2p)) {                if ((seg2p + siz) < end) {                  begin_stack[loop] = seg2p + siz;                  end_stack[loop++] = end;                }                end = seg2p - siz;            }            else { /* 左半部分 */                if ((seg2p - siz) > begin) {                    begin_stack[loop] = begin;                    end_stack[loop++] = seg2p - siz;                }                begin = seg2p + siz;            }        }    }}

4.  数组合并 array_merge

array_merge用于合并两个或者多个数组(实际上,array_merge可以仅传入一个数组参数如array_merge($a)  )例如:

$a = array('index' => "a",1 =>'a');$b = array('index' => "b",1 =>'b');print_r(array_merge($a, $b));

结果是:

Array(    [index] => b    [0] => a    [1] => b)

那么,对于array_merge, PHP底层是如何处理字符串索引和数字索引的呢?

1

2

3

4

PHP_FUNCTION(array_merge)

{

     php_array_merge_or_replace_wrapper(INTERNAL_FUNCTION_PARAM_PASSTHRU, 0, 0);

}

因此,实际上是通过php_array_merge_or_replace_wrapper来完成的,继续查看php_array_merge_or_replace_wrapper的实现:

static void php_array_merge_or_replace_wrapper(INTERNAL_FUNCTION_PARAMETERS, int recursive, int replace);

注意传入的参数,recursive=0, replace=0 ( 不递归merge,数字索引不替换 ) ,而INTERNAL_FUNCTION_PARAMETERS是:

#define INTERNAL_FUNCTION_PARAMETERS int ht, zval *return_value, zval **return_value_ptr, zval *this_ptr, int return_value_used     TSRMLS_DC

array_merge的基本过程是:

(1)     确定初始化数组的大小(使用元素最多的数组的大小作为结果数组的初始大小),初始化数组:

for (i = 0; i < argc; i++) {      /* 不是数组 */    if (Z_TYPE_PP(args[i]) != IS_ARRAY) {        php_error_docref(NULL TSRMLS_CC, E_WARNING, "Argument #%d is not an array", i + 1);        efree(args);        RETURN_NULL();    } else {        int num = zend_hash_num_elements(Z_ARRVAL_PP(args[i]));                            /* 使用元素最多的数组的大小作为init_size的大小 */        if (num > init_size) {            init_size = num;        }    }} array_init_size(return_value, init_size);

return_value是个zval *, 它指向返回值的zval

(2)     对array_merge参数中的每个数组,依次执行php_array_merge(由于replace=0和recursive=0), 我们只看第一个分支:

for (i = 0; i < argc; i++) {SEPARATE_ZVAL(args[i]); if (!replace) {        php_array_merge(Z_ARRVAL_P(return_value), Z_ARRVAL_PP(args[i]), recursive TSRMLS_CC);    }}

SEPARATE_ZVAL用于创建一个与原始数据相同的zval,避免在操作的过程中修改参数的值(参数是非引用传递的情况下)。而真正的merge过程是通过php_array_merge来实现的。

(3) merge的过程

由于PHP数组中包含字符串索引和数字索引,对于这两类不同的索引,merge的处理是不同的(replace=0, recursive=0,只看对应的分支):

switch (zend_hash_get_current_key_ex(src, &string_key, &string_key_len, &num_key, 0, &pos)){    case HASH_KEY_IS_STRING:        Z_ADDREF_PP(src_entry);        zend_hash_update(dest, string_key, string_key_len, src_entry, sizeof(zval *), NULL);    break;     case HASH_KEY_IS_LONG:        Z_ADDREF_PP(src_entry);        zend_hash_next_index_insert(dest, src_entry, sizeof(zval *), NULL);    break;}

上述代码表明:对于字符串索引,PHP在执行array_merge的时候,会更新字符串索引的值,其结果就是参数靠后数组的值会覆盖靠前的数组的值。而对于数字型索引,PHP执行的zend_hash_next_index_insert操作,也就是插入一个新的元素,这同时也更改了键(例如原来的key=2, array_merge之后,可能变成了0)。这也解释了最开始array_merge脚本的输出:

$a = array('index' => "a",1 =>'a');$b = array('index' => "b",1 =>'b');print_r(array_merge($a, $b));

更多的数组操作函数我们不再一一介绍,只要知道了HashTable的结构,要理解这些实现,并不困难。

由于写作匆忙,本文难免会有错误之处,敬请批评指正。

ps: 近期正在补习C语言/操作系统的相关基础,尤其是指针/内存管理这一块,有一起的同学,欢迎交流。

   三、参考文献

  1. http://www.nowamagic.net/librarys/veda/detail/1455
  2. http://www.nowamagic.net/librarys/veda/detail/1474
  3. http://www.phppan.com/2010/01/php-source-code5-array/
声明:
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。