まず、v8 API の使用と swig フレームワークの使用の違いを紹介します。
(1) v8 API メソッドは、強力で完全な機能を備えた公式が提供するネイティブ メソッドです。欠点は、v8 API に精通する必要があり、作成がより面倒であることです。 js に変換されるため、他のスクリプト言語を簡単にサポートすることはできません。
(2) swig はサードパーティのサポートであり、Python、lua、js などのさまざまな一般的なスクリプト言語用の C++ コンポーネント パッケージング コードの生成をサポートする強力なコンポーネント開発ツールです。swig ユーザーは次のことのみを行う必要があります。 C++ コードを記述し、設定ファイルを変更する さまざまなスクリプト言語のコンポーネント開発フレームワークを知らなくても、さまざまなスクリプト言語で C++ コンポーネントを開発できます。欠点は、JavaScript コールバックがサポートされていないこと、ドキュメントとデモ コードが不完全であることです。ユーザーは多くありません。
1. Node.js コンポーネントを実装するための Pure JS
(1) helloworld ディレクトリに移動し、npm init を実行して package.json を初期化します。さまざまなオプションを無視し、デフォルトのままにします。
(2) コンポーネント実装index.js、例:
module.exports.Hello = function(name) { console.log('Hello ' + name); }
(3) 外側のディレクトリで実行します: npm install ./helloworld、helloworld は、node_modules ディレクトリにインストールされます。
(4) コンポーネント使用コードを記述します:
var m = require('helloworld'); m.Hello('zhangsan'); //输出: Hello zhangsan
2. v8 API を使用して JS コンポーネントを実装する - 同期モード
(1) binding.gyp を書き込みます。例:
{ "targets": [ { "target_name": "hello", "sources": [ "hello.cpp" ] } ] }
(2) コンポーネント hello.cpp の実装を記述します。例:
#include <node.h> namespace cpphello { using v8::FunctionCallbackInfo; using v8::Isolate; using v8::Local; using v8::Object; using v8::String; using v8::Value; void Foo(const FunctionCallbackInfo<Value>& args) { Isolate* isolate = args.GetIsolate(); args.GetReturnValue().Set(String::NewFromUtf8(isolate, "Hello World")); } void Init(Local<Object> exports) { NODE_SET_METHOD(exports, "foo", Foo); } NODE_MODULE(cpphello, Init) }
(3) コンポーネントをコンパイルします
node-gyp configure node-gyp build ./build/Release/目录下会生成hello.node模块。
(4) テスト用のjsコードを書く
const m = require('./build/Release/hello') console.log(m.foo()); //输出 Hello World
(5) インストール用に package.json を追加します。例:
{ "name": "hello", "version": "1.0.0", "description": "", "main": "index.js", "scripts": { "test": "node test.js" }, "author": "", "license": "ISC" }
(5) コンポーネントをnode_modulesにインストールします
コンポーネント ディレクトリの上位ディレクトリに移動し、次のコマンドを実行します: npm install ./hloc //注: helloc はコンポーネント ディレクトリです
hello モジュールは現在のディレクトリの node_modules ディレクトリにインストールされます。テスト コードは次のように記述されます。
var m = require('hello'); console.log(m.foo());
上記の説明は同期コンポーネントです。 foo() 関数は同期関数です。つまり、foo() 関数の呼び出し元は、foo() 関数が実行を完了するまで待つ必要があります。 IO に時間のかかる操作、関数、非同期 foo() 関数を使用すると、ブロッキング待機が軽減され、全体的なパフォーマンスが向上します。
hello.cpp:
/* * Node.js cpp Addons demo: async call and call back. * gcc 4.8.2 * author:cswuyg * Date:2016.02.22 * */ #include <iostream> #include <node.h> #include <uv.h> #include <sstream> #include <unistd.h> #include <pthread.h> namespace cpphello { using v8::FunctionCallbackInfo; using v8::Function; using v8::Isolate; using v8::Local; using v8::Object; using v8::Value; using v8::Exception; using v8::Persistent; using v8::HandleScope; using v8::Integer; using v8::String; // async task struct MyTask{ uv_work_t work; int a{0}; int b{0}; int output{0}; unsigned long long work_tid{0}; unsigned long long main_tid{0}; Persistent<Function> callback; }; // async function void query_async(uv_work_t* work) { MyTask* task = (MyTask*)work->data; task->output = task->a + task->b; task->work_tid = pthread_self(); usleep(1000 * 1000 * 1); // 1 second } // async complete callback void query_finish(uv_work_t* work, int status) { Isolate* isolate = Isolate::GetCurrent(); HandleScope handle_scope(isolate); MyTask* task = (MyTask*)work->data; const unsigned int argc = 3; std::stringstream stream; stream << task->main_tid; std::string main_tid_s{stream.str()}; stream.str(""); stream << task->work_tid; std::string work_tid_s{stream.str()}; Local<Value> argv[argc] = { Integer::New(isolate, task->output), String::NewFromUtf8(isolate, main_tid_s.c_str()), String::NewFromUtf8(isolate, work_tid_s.c_str()) }; Local<Function>::New(isolate, task->callback)->Call(isolate->GetCurrentContext()->Global(), argc, argv); task->callback.Reset(); delete task; } // async main void async_foo(const FunctionCallbackInfo<Value>& args) { Isolate* isolate = args.GetIsolate(); HandleScope handle_scope(isolate); if (args.Length() != 3) { isolate->ThrowException(Exception::TypeError(String::NewFromUtf8(isolate, "arguments num : 3"))); return; } if (!args[0]->IsNumber() || !args[1]->IsNumber() || !args[2]->IsFunction()) { isolate->ThrowException(Exception::TypeError(String::NewFromUtf8(isolate, "arguments error"))); return; } MyTask* my_task = new MyTask; my_task->a = args[0]->ToInteger()->Value(); my_task->b = args[1]->ToInteger()->Value(); my_task->callback.Reset(isolate, Local<Function>::Cast(args[2])); my_task->work.data = my_task; my_task->main_tid = pthread_self(); uv_loop_t *loop = uv_default_loop(); uv_queue_work(loop, &my_task->work, query_async, query_finish); } void Init(Local<Object> exports) { NODE_SET_METHOD(exports, "foo", async_foo); } NODE_MODULE(cpphello, Init) }
テスト.js
// test helloUV module 'use strict'; const m = require('helloUV') m.foo(1, 2, (a, b, c)=>{ console.log('finish job:' + a); console.log('main thread:' + b); console.log('work thread:' + c); }); /* output: finish job:3 main thread:139660941432640 work thread:139660876334848 */
swig フレームワークを使用して Node.js コンポーネントを作成します
例:
namespace a { class A{ public: int add(int a, int y); }; int add(int x, int y); }
例:
/* File : IExport.i */ %module my_mod %include "typemaps.i" %include "std_string.i" %include "std_vector.i" %{ #include "export.h" %} %apply int *OUTPUT { int *result, int* xx}; %apply std::string *OUTPUT { std::string* result, std::string* yy }; %apply std::string &OUTPUT { std::string& result }; %include "export.h" namespace std { %template(vectori) vector<int>; %template(vectorstr) vector<std::string>; };
C++ 関数パラメータのポインタ パラメータが値 (*.i ファイルの OUTPUT で指定) を返す場合、Swig はそれらを JS 関数の戻り値として処理します。複数のポインタがある場合は、JS 関数の戻り値です。はリストです。
%template(vectori) Vector
(3)node-gyp
を使用してコンパイル用の binding.gyp を作成します
(4) warpper cpp ファイルを生成します。生成するときは、v8 バージョン情報に注意してください。例: swig -javascript -node -c++ -DV8_VERSION=0x040599 example.i
(5) コンパイル&テスト
問題は、stl 型とカスタム型の使用にあります。この点に関する公式ドキュメントは少なすぎます。
swig - std::vector、std::string の JavaScript カプセル化の使用。主に *.i ファイルの実装に焦点を当てた私の演習を参照してください。
5.その他
v8 API を使用して Node.js コンポーネントを実装する場合、Lua コンポーネントの実装との類似点がわかります。Lua にはステート マシンがあり、Node には Isolate があります。
Node の js スクリプトには new キーワードがありますが、Lua にはありません。そのため、Lua はオブジェクトを作成するための外部オブジェクト ファクトリのみを提供しますが、Node はオブジェクト ファクトリまたはクラスのカプセル化を提供できます。
以上がこの記事の全内容です。皆様の学習のお役に立てれば幸いです。

JavaScriptフレームワークのパワーは、開発を簡素化し、ユーザーエクスペリエンスとアプリケーションのパフォーマンスを向上させることにあります。フレームワークを選択するときは、次のことを検討してください。1。プロジェクトのサイズと複雑さ、2。チームエクスペリエンス、3。エコシステムとコミュニティサポート。

はじめに私はあなたがそれを奇妙に思うかもしれないことを知っています、JavaScript、C、およびブラウザは正確に何をしなければなりませんか?彼らは無関係であるように見えますが、実際、彼らは現代のウェブ開発において非常に重要な役割を果たしています。今日は、これら3つの間の密接なつながりについて説明します。この記事を通して、JavaScriptがブラウザでどのように実行されるか、ブラウザエンジンでのCの役割、およびそれらが協力してWebページのレンダリングと相互作用を駆動する方法を学びます。私たちは皆、JavaScriptとブラウザの関係を知っています。 JavaScriptは、フロントエンド開発のコア言語です。ブラウザで直接実行され、Webページが鮮明で興味深いものになります。なぜJavascrを疑問に思ったことがありますか

node.jsは、主にストリームのおかげで、効率的なI/Oで優れています。 ストリームはデータを段階的に処理し、メモリの過負荷を回避します。大きなファイル、ネットワークタスク、リアルタイムアプリケーションの場合。ストリームとTypeScriptのタイプの安全性を組み合わせることで、パワーが作成されます

PythonとJavaScriptのパフォーマンスと効率の違いは、主に以下に反映されています。1)解釈された言語として、Pythonはゆっくりと実行されますが、開発効率が高く、迅速なプロトタイプ開発に適しています。 2)JavaScriptはブラウザ内の単一のスレッドに限定されていますが、マルチスレッドおよび非同期I/Oを使用してnode.jsのパフォーマンスを改善でき、両方とも実際のプロジェクトで利点があります。

JavaScriptは1995年に発信され、Brandon Ikeによって作成され、言語をCに実現しました。 2。JavaScriptのメモリ管理とパフォーマンスの最適化は、C言語に依存しています。 3. C言語のクロスプラットフォーム機能は、さまざまなオペレーティングシステムでJavaScriptを効率的に実行するのに役立ちます。

JavaScriptはブラウザとnode.js環境で実行され、JavaScriptエンジンに依存してコードを解析および実行します。 1)解析段階で抽象的構文ツリー(AST)を生成します。 2)ASTをコンパイル段階のバイトコードまたはマシンコードに変換します。 3)実行段階でコンパイルされたコードを実行します。

PythonとJavaScriptの将来の傾向には、1。Pythonが科学コンピューティングの分野での位置を統合し、AI、2。JavaScriptはWebテクノロジーの開発を促進します。どちらもそれぞれのフィールドでアプリケーションシナリオを拡大し続け、パフォーマンスをより多くのブレークスルーを行います。

開発環境におけるPythonとJavaScriptの両方の選択が重要です。 1)Pythonの開発環境には、Pycharm、Jupyternotebook、Anacondaが含まれます。これらは、データサイエンスと迅速なプロトタイピングに適しています。 2)JavaScriptの開発環境には、フロントエンドおよびバックエンド開発に適したnode.js、vscode、およびwebpackが含まれます。プロジェクトのニーズに応じて適切なツールを選択すると、開発効率とプロジェクトの成功率が向上する可能性があります。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 中国語版
中国語版、とても使いやすい

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ドリームウィーバー CS6
ビジュアル Web 開発ツール

Dreamweaver Mac版
ビジュアル Web 開発ツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

ホットトピック









