本文主要讲述了如何加速动态网站的MySQL索引分析和优化。
一、什么是索引?
索引用来快速地寻找那些具有特定值的记录,所有MySQL索引都以B-树的形式保存。如果没有索引,执行查询时MySQL必须从第一个记录开始扫描整个表的所有记录,直至找到符合要求的记录。表里面的记录数量越多,这个操作的代价就越高。如果作为搜索条件的列上已经创建了索引,MySQL无需扫描任何记录即可迅速得到目标记录所在的位置。如果表有1000个记录,通过索引查找记录至少要比顺序扫描记录快100倍。
假设我们创建了一个名为people的表:
CREATE TABLE people ( peopleid SMALLINT NOT NULL,
name CHAR(50) NOT NULL );
然后,我们完全随机把1000个不同name值插入到people表。在数据文件中name列没有任何明确的次序。如果我们创建了name列的索引,MySQL将在索引中排序name列,对于索引中的每一项,MySQL在内部为它保存一个数据文件中实际记录所在位置的“指针”。因此,如果我们要查找name等于“Mike”记录的peopleid(SQL命令为“SELECT peopleid FROM people WHERE name='Mike';”),MySQL能够在name的索引中查找“Mike”值,然后直接转到数据文件中相应的行,准确地返回该行的peopleid(999)。在这个过程中,MySQL只需处理一个行就可以返回结果。如果没有“name”列的索引,MySQL要扫描数据文件中的所有记录,即1000个记录!显然,需要MySQL处理的记录数量越少,则它完成任务的速度就越快。
二、索引的类型
MySQL提供多种索引类型供选择:
普通索引 :
这是最基本的索引类型,而且它没有唯一性之类的限制。普通索引可以通过以下几种方式创建:
创建索引,例如CREATE INDEX <索引的名字> ON tablename (列的列表);
修改表,例如ALTER TABLE tablename ADD INDEX [索引的名字] (列的列表);
创建表的时候指定索引,例如CREATE TABLE tablename ( [...], INDEX [索引的名字] (列的列表) );
唯一性索引:
这种索引和前面的“普通索引”基本相同,但有一个区别:索引列的所有值都只能出现一次,即必须唯一。唯一性索引可以用以下几种方式创建:
创建索引,例如CREATE UNIQUE INDEX <索引的名字> ON tablename (列的列表);
修改表,例如ALTER TABLE tablename ADD UNIQUE [索引的名字] (列的列表);
创建表的时候指定索引,例如CREATE TABLE tablename ( [...], UNIQUE [索引的名字] (列的列表) );
主键 :
主键是一种唯一性索引,但它必须指定为“PRIMARY KEY”。如果你曾经用过AUTO_INCREMENT类型的列,你可能已经熟悉主键之类的概念了。主键一般在创建表的时候指定,例如“CREATE TABLE tablename ( [...], PRIMARY KEY (列的列表) ); ”。但是,我们也可以通过修改表的方式加入主键,例如“ALTER TABLE tablename ADD PRIMARY KEY (列的列表); ”。每个表只能有一个主键。
全文索引:
MySQL从3.23.23版开始支持全文索引和全文检索。在MySQL中,全文索引的索引类型为FULLTEXT。全文索引可以在VARCHAR或者TEXT类型的列上创建。它可以通过CREATE TABLE命令创建,也可以通过ALTER TABLE或CREATE INDEX命令创建。对于大规模的数据集,通过ALTER TABLE(或者CREATE INDEX)命令创建全文索引要比把记录插入带有全文索引的空表更快。本文下面的讨论不再涉及全文索引,要了解更多信息,请参见MySQL documentation。
三、单列索引与多列索引
索引可以是单列索引,也可以是多列索引。下面我们通过具体的例子来说明这两种索引的区别。假设有这样一个people表:
CREATE TABLE people ( peopleid
SMALLINT NOT NULL AUTO_INCREMENT,
firstname CHAR(50) NOT NULL, lastname CHAR(50) NOT NULL,
age SMALLINT NOT NULL,
townid SMALLINT NOT NULL, PRIMARY KEY (peopleid) );
下面是我们插入到这个people表的数据:
这个数据片段中有四个名字为“Mikes”的人(其中两个姓Sullivans,两个姓McConnells),有两个年龄为17岁的人,还有一个名字与众不同的Joe Smith。
这个表的主要用途是根据指定的用户姓、名以及年龄返回相应的peopleid。例如,我们可能需要查找姓名为Mike Sullivan、年龄17岁用户的peopleid(SQL命令为SELECT peopleid FROM people WHERE firstname='Mike' AND lastname='Sullivan' AND age=17;)。由于我们不想让MySQL每次执行查询就去扫描整个表,这里需要考虑运用索引。
首先,我们可以考虑在单个列上创建索引,比如firstname、lastname或者age列。如果我们创建firstname列的索引(ALTER TABLE people ADD INDEX firstname (firstname);),MySQL将通过这个索引迅速把搜索范围限制到那些firstname='Mike'的记录,然后再在这个“中间结果集”上进行其他条件的搜索:它首先排除那些lastname不等于“Sullivan”的记录,然后排除那些age不等于17的记录。当记录满足所有搜索条件之后,MySQL就返回最终的搜索结果。
由于建立了firstname列的索引,与执行表的完全扫描相比,MySQL的效率提高了很多,但我们要求MySQL扫描的记录数量仍旧远远超过了实际所需要的。虽然我们可以删除firstname列上的索引,再创建lastname或者age列的索引,但总地看来,不论在哪个列上创建索引搜索效率仍旧相似。
为了提高搜索效率,我们需要考虑运用多列索引。如果为firstname、lastname和age这三个列创建一个多列索引,MySQL只需一次检索就能够找出正确的结果!下面是创建这个多列索引的SQL命令:
ALTER TABLE people ADD INDEX fname_lname_age (firstname,lastname,age);
由于索引文件以B-树格式保存,MySQL能够立即转到合适的firstname,然后再转到合适的lastname,最后转到合适的age。在没有扫描数据文件任何一个记录的情况下,MySQL就正确地找出了搜索的目标记录!
那么,如果在firstname、lastname、age这三个列上分别创建单列索引,效果是否和创建一个firstname、lastname、age的多列索引一样呢?答案是否定的,两者完全不同。当我们执行查询的时候,MySQL只能使用一个索引。如果你有三个单列的索引,MySQL会试图选择一个限制最严格的索引。但是,即使是限制最严格的单列索引,它的限制能力也肯定远远低于firstname、lastname、age这三个列上的多列索引。
四、最左前缀
多列索引还有另外一个优点,它通过称为最左前缀(Leftmost Prefixing)的概念体现出来。继续考虑前面的例子,现在我们有一个firstname、lastname、age列上的多列索引,我们称这个索引为fname_lname_age。当搜索条件是以下各种列的组合时,MySQL将使用fname_lname_age索引:
firstname,lastname,age
firstname,lastname
firstname
从另一方面理解,它相当于我们创建了(firstname,lastname,age)、(firstname,lastname)以及(firstname)这些列组合上的索引。下面这些查询都能够使用这个fname_lname_age索引:
SELECT peopleid FROM people
WHERE firstname='Mike' AND lastname='Sullivan' AND age='17';
SELECT peopleid FROM people WHERE firstname='Mike' AND lastname='Sullivan';
SELECT peopleid FROM people WHERE firstname='Mike';
The following queries cannot use the index at all:
SELECT peopleid FROM people WHERE lastname='Sullivan';
SELECT peopleid FROM people WHERE age='17';
SELECT peopleid FROM people WHERE lastname='Sullivan' AND age='17';
五、选择索引列
在性能优化过程中,选择在哪些列上创建索引是最重要的步骤之一。可以考虑使用索引的主要有两种类型的列:在WHERE子句中出现的列,在join子句中出现的列。请看下面这个查询:
SELECT age ## 不使用索引
FROM people WHERE firstname='Mike' ## 考虑使用索引
AND lastname='Sullivan' ## 考虑使用索引
这个查询与前面的查询略有不同,但仍属于简单查询。由于age是在SELECT部分被引用,MySQL不会用它来限制列选择操作。因此,对于这个查询来说,创建age列的索引没有什么必要。下面是一个更复杂的例子:
SELECT people.age, ##不使用索引
town.name ##不使用索引
FROM people LEFT JOIN town ON
people.townid=town.townid ##考虑使用索引
WHERE firstname='Mike' ##考虑使用索引
AND lastname='Sullivan' ##考虑使用索引
前の例と同様に、firstname と lastname が WHERE 句に含まれるため、これら 2 つの列にインデックスを作成する必要があります。さらに、town テーブルの townid 列が join 句に出現するため、この列にインデックスを作成することを検討する必要があります。では、WHERE 句と join 句に含まれるすべての列にインデックスを付ける必要があると単純に考えてよいのでしょうか?ほぼそのとおりですが、完全ではありません。列を比較する演算子の種類も考慮する必要があります。 MySQL は、演算子 <、<=、=、>、>=、BETWEEN、IN、および場合によっては LIKE に対してのみインデックスを使用します。 LIKE 操作でインデックスを使用できるのは、他のオペランドがワイルドカード文字 (% または _) で始まっていない場合です。たとえば、クエリ「SELECT peopleid FROM people WHERE firstname LIKE 'Mich%';」ではインデックスが使用されますが、クエリ「SELECT peopleid FROM people WHERE firstname LIKE '%ike';」ではインデックスが使用されません。