ホームページ >バックエンド開発 >PHPチュートリアル >PHP のメモリ破損の脆弱性 (CVE-2014-8142 および CVE-2015-0231) の悪用 (シリーズのパート 3)
この記事は思ったより時間がかかりました、長いです、しかし、せっかくの時間なので、この脆弱性を悪用する方法をビデオで説明したいと思います。そのため、この記事は前の 2 つほど詳細ではありません。
一部の人はがっかりするかもしれません。はい、この記事ではその方法を紹介するだけです。 POC を作成します (実際に POC をリリースするわけではありません)。記事の最後にあるビデオでは、自動化されたリモート活用ツールと、実際の環境でこの POC を正常に実行するために使用する手順を示します。
この脆弱性の悪用方法をより簡単に説明するために、次のコードをデモンストレーションとして使用し、特定の状況を詳細に分析します。
#!php<?phpecho serialize(unserialize(base64_decode($_GET['data'])));?>
私たちの目標は、任意の PHP コードを実行できるようにすることです。もちろん、目標を達成するためにシェルコードを挿入することもできますが、この方法は創造的でもエレガントでもありません (パート 1 を覚えている場合は、より上位のバージョンでは成功しない可能性があります)。 、任意の PHP コードを実行できるようにするには、php_execute_script と zend_eval_string を呼び出す必要があります。ただし、リモート攻撃を実行できるようにしたいので、executor_globals と JMP_BUF を見つける必要があります。詳細は後ほど紹介します。
つまり、(順不同) 以下を見つける必要があります。
幸いなことに、上記の要件の一部はバイナリに直接ダンプされるため、比較的簡単に見つけることができます。 PHP binay の strtab。
素晴らしいですね。そこから zend_eval_string のアドレスを直接見つけて、このアドレスが GDB で正しいかどうかを確認します。
zend_eval_string のアドレスを検索します
gdb で対応するアドレスを表示します
executor_global のアドレスを検索します
gdb で対応するアドレスを表示します
すごいですね! JMP_BUF を見つけるにはどうすればよいでしょうか? コードを読むと、_zend_executor_globals オブジェクトが見つかり、その中に bailout という名前の JMP_BUF ポインターが見つかりました。GDB を終了して、アドレスが正しいかどうかを確認してみましょう。
print zend_executor_globals->bailout
わかりました, このアドレスを取得しましたが、このアドレスは何に使われますか? さて、PHP では JMP_BUF は PHP の「try{} - catch{}」メカニズムを実装するために使用されます。これについては後で詳しく説明します。
0x02 利用方法 1 - ROP
この RFC は、multipart/form-data を使用した POST リクエストからのデータをスタックに書き込むことができ、(さまざまな理由により) PHP によって上書きされないことを指定します。 「通常の」ファイルをアップロードします。
素晴らしいですね。スタックに何を書き込むことができますか?
ヒント:以前に探していたもの : )
以前は非常に多くのアドレスを見つけるのに非常に多くの時間を費やしたので、今度はそれらを使用することにしました。では、いくつかの調査を経て、以前のアドレスをどのように使用すればよいでしょうか?次のように配置する必要があります。 eval_string へのポインタを 2 回入力します。
POP - ????
XCHG ESP; ; RET - ??
Zend_Eval_String - 0x082da150Zend_Bailout - 0x00000000
Pointer_To_Eval_String - 0xbfffda04
Ret ポインタ000000 0
我们拿到了这两个地址了(为啥这些地址相差那么大, 因为它们是相对地址), 我们可以继续完成 stack 中的数据:
好了, 该是时候测试了.
Hmmm, 这不是我想要的结果, 现在怎么办? 看起来好像我们的代码尝试跳到我们的 gadget (c394). 不幸的是, 你还需要知道一些事情. SPLObjectStorage 要求这些 gadget 在 php 是可以访问的, 所以我们还需要修改一下. 经过修改之后:
方法 1 就到此为止了, 方法 1 只能影响老版本的 PHP. 我们继续研究新版本的 PHP 利用方法.
比较走运的是, 之前找到 php_execute_script 和 jmp_buf 地址, 在新 exploit 中都会被用到.
jmp_buf 在 setjmp & longjmp 中被用来保存 "环境" 以预防 "不可恢复" 的错误. 在 32 位系统中, jmp_buf 是一个存储 6 个 int 的数组, 在 64 位系统中, jmp_buf 存储的是 8 个 int 的数组. 不幸的是, 需要自己查看代码来判断 jmp_buf 保存的寄存器的顺序. 这里有个 jmp_buf 样例布局. 让我们看一下 PHP 中的内容...
在我的机器上, 寄存器的顺序是: ebx, esp, ebp, esi, edi, eip. 值得完成的事情一般都不怎么容易完成, 在这里也一样, 我们的 edi & eip 看起来貌似被 Glibc 混淆了, Glibc 有个宏叫 PTR_MANGLE , 在视频中, 我们会讲解如何破解 JMPBUF.
一旦破解出了 edi & eip, 我们就可以继续重写和释放内存了. 幸运的是, 我们可以继续利用 SPLObjectStorage 远程释放内存. 剩下的事情就是将如何写到 stack 中. 和Part 2, 我们可以任意操纵 PHP 内存. 我们先释放一些内存, 然后再写 7 byte 数据填充, 当 php 重写我们的数据时, 再重复之前的操作. 第二次重写能够让我们写入任意长度的数据到 stack 中 (我测试的时候, 这个长度大概可以达到 2048 byte). 我们写入的数据和之前使用 ROP 的那个例子差不多. 我们还要继续 "加密" 我们写入 stack 中的数据. 这是攻击效果:
video , 自备梯子
就和作者说的一样, 这篇文章没有之前两篇写得详细.
原文下有评论, 作者说他通过 memory leak 获取了整个 php binary 文件.
正常情况下, 一般的套路就是:
jmpbuf 是 setjmp, longjmp 所使用的数据结构, 以实现 try--catch 机制的东西, 和 goto 语法效果差不多, setjmp 相当于在某个位置的 label, longjmp 相当于 goto, 但是 goto 语法并不能跨函数跳转. jmpbuf 主要保存着 caller 的寄存器信息以方便 longjmp 恢复. 另外 glibc 会混淆一些寄存器的值(除了有漏洞的 glibc ).
先查看 setjmp 代码:
#!bash(gdb) disassemble setjmpDump of assembler code for function setjmp: 0xb7c94410 <+0>: mov eax,DWORD PTR [esp+0x4] 0xb7c94414 <+4>: mov DWORD PTR [eax],ebx # 1. 保存 ebx 0xb7c94416 <+6>: mov DWORD PTR [eax+0x4],esi # 2. 保存 esi 0xb7c94419 <+9>: mov DWORD PTR [eax+0x8],edi # 3. 保存 edi 0xb7c9441c <+12>: lea ecx,[esp+0x4] 0xb7c94420 <+16>: xor ecx,DWORD PTR gs:0x18 0xb7c94427 <+23>: rol ecx,0x9 0xb7c9442a <+26>: mov DWORD PTR [eax+0x10],ecx # 4. 保存 esp 0xb7c9442d <+29>: mov ecx,DWORD PTR [esp] 0xb7c94430 <+32>: xor ecx,DWORD PTR gs:0x18 0xb7c94437 <+39>: rol ecx,0x9 0xb7c9443a <+42>: mov DWORD PTR [eax+0x14],ecx # 5. 保存 eip 0xb7c9443d <+45>: mov DWORD PTR [eax+0xc],ebp # 6. 保存 ebp 0xb7c94440 <+48>: push 0x1 0xb7c94442 <+50>: push DWORD PTR [esp+0x8] 0xb7c94446 <+54>: call 0xb7c943c0 <__sigjmp_save> 0xb7c9444b <+59>: pop ecx 0xb7c9444c <+60>: pop edx 0xb7c9444d <+61>: ret
上面的寄存器保存的都是 caller 的寄存器状态, 其中 esp, eip 都被混淆过了(作者自己的图也是 esp 和 eip 被混淆), 就是使用 PTR_MANGLE 进行混淆.
PTR_MANGLE 和 PTR_DEMANGLE 宏定义如下:
#!cpp# define PTR_MANGLE(reg) xorl %gs:POINTER_GUARD, reg; \ roll $9, reg# define PTR_DEMANGLE(reg) rorl $9, reg; \ xorl %gs:POINTER_GUARD, reg
其中 gs:0x18 就是上面的 POINTER_GUARD
setjmp() 使用 PTR_MANGLE 进行混淆寄存器, longjmp() 使用 PTR_DEMANGLE 解出正常的寄存器. 为了后续能过正常覆盖 jmpbuf, 所以我们需要获得 POINTER_GUARD 的值, 由于 jmpbuf 数据结构可以越界读, caller 的 eip 也可以拿到, 所以通过 PTR_DEMANGLE 就可以获得 POINTER_GUARD 的值.
通过阅读代码, 我们可以知道 php_execute_script 调用了 setjmp, 并将 jmpbuf 保存到 EG(bailout) 中, 通过泄漏 php_execute_script 地址 即可知道调用 setjmp 时到 eip.
jmpbuf 地址向前搜索数值 XX 00 00 00 (XX>0x0c and XX<0x8f), 搜索到一个这样的值之后, 可以把这个值当作一个 memory block.
先看看 ZMM 的几个结构体:
#!cpp/* mm block type */typedef struct _zend_mm_block_info { size_t _size; size_t _prev;} zend_mm_block_info;
.
#!cpptypedef struct _zend_mm_free_block { zend_mm_block_info info; struct _zend_mm_free_block *prev_free_block; struct _zend_mm_free_block *next_free_block; struct _zend_mm_free_block **parent; struct _zend_mm_free_block *child[2];} zend_mm_free_block;
.
#!cppstruct _zend_mm_heap { int use_zend_alloc; void *(*_malloc)(size_t); void (*_free)(void*); void *(*_realloc)(void*, size_t); size_t free_bitmap; size_t large_free_bitmap; size_t block_size; size_t compact_size; zend_mm_segment *segments_list; zend_mm_storage *storage; size_t real_size; size_t real_peak; size_t limit; size_t size; size_t peak; size_t reserve_size; void *reserve; int overflow; int internal;#if ZEND_MM_CACHE unsigned int cached; zend_mm_free_block *cache[ZEND_MM_NUM_BUCKETS];#endif zend_mm_free_block *free_buckets[ZEND_MM_NUM_BUCKETS*2]; zend_mm_free_block *large_free_buckets[ZEND_MM_NUM_BUCKETS]; zend_mm_free_block *rest_buckets[2]; int rest_count;};
我们需要关注的是 _zend_mm_heap 中的 cached. ZMM 会将 0x10 大小的内存块放进 cached 中, 所以当我们找到一个可以当做 memory block 之后, 最后几个字节(7 byte 数据)伪造一个 memory header (_zend_mm_block_info), 然后再用 string 重用这个伪造后的 memory block, 如果写入的长度不足以覆盖 jmpbuf, 继续伪造 memory header 相关的操作, 直到能够覆盖 jmpbuf 为止.
将 eip 设置为 zend_eval_string , 将 esp 设置为一个直接可控的 stack(比如说 jmpbuf 之后), 填充好 jmpbuf, 该混淆的寄存器继续混淆. 然后在这个可控的 stack 上设置好 zend_eval_string 的参数, zend_eval_string 的定义如下:
#!cZEND_API int zend_eval_string(char *str, zval *retval_ptr, char *string_name TSRMLS_DC)
最后触发一个 exception, 即可执行我们想要的代码.
php7 的 zval 格式有很大的变化, 通过字符串数据覆盖 zval 结构没法再做到读取任意地址数据了, 只能向后读取数据(drops 这篇文章的作者 libnex 说他有办法, 期待新文章).
#!cstruct _zval_struct { zend_value value; /* value */ union { struct { ZEND_ENDIAN_LOHI_4( zend_uchar type, /* active type */ zend_uchar type_flags, zend_uchar const_flags, zend_uchar reserved) /* call info for EX(This) */ } v; uint32_t type_info; } u1; union { uint32_t var_flags; uint32_t next; /* hash collision chain */ uint32_t cache_slot; /* literal cache slot */ uint32_t lineno; /* line number (for ast nodes) */ uint32_t num_args; /* arguments number for EX(This) */ uint32_t fe_pos; /* foreach position */ uint32_t fe_iter_idx; /* foreach iterator index */ } u2;};
.
#!cstruct _zend_string { zend_refcounted_h gc; zend_ulong h; /* hash value */ size_t len; char val[1];};
如果通过数据去覆盖 zval_struct , 只能通过修改 len 来实现向后读取.
如果还有疑惑的地方, 可以去看看作者的视频以及树人的 paper. 如果我补充的有不正确的地方, 请不吝赐教.