ホームページ >バックエンド開発 >Python チュートリアル >k番目に小さい要素を見つけるためのPythonコード共有
from random import randint
from math import ceil, floor
def _partition(A, l, r, i):
"""以A[i]为主元划分数组A[l..r],使得:
A[l..m-1] <= A[m] < A[m+1..r]
"""
A[i], A[r] = A[r], A[i] # i交换到末位r,作为主元
pivot = A[r] # 主元
m = l # 索引标记
for n in xrange(l, r): # l..r-1
if A[n] <= pivot:
A[m], A[n] = A[n], A[m] # 交换
m += 1 # 后移
A[m], A[r] = A[r], A[m] # 主元到m位
return m
def _rand(A, l, r):
"""随机划分主元"""
return randint(l, r) # A[l..r]随机取一个
def _select(A, l, r, k, pivot_selector = _rand):
"""利用快排,得A[l..r]中第k小的数,k in [l+1,r+1]:
其尾递归方式,伪码如下:
SELECT(A, l, r, k)
1 while true:
2 i ← ? // 划分主元位置
3 m ← PARTITION(A, l, r, i) // 数组划分
4 n ← m - l + 1 // A[l..m]元素个数
5 if k = n // 检查A[m]是否是第k小的元素
6 then return A[m]
7 elseif k < n // 左划分区
8 r = m - 1
9 else // 右划分区
10 k = k - n
11 l = m + 1
Args:
pivot_selector(Function): 主元选取方法,默认随机方式
"""
if not A:
return None
if l == r:
return A[l]
while True:
i = pivot_selector(A, l, r)
m = _partition(A, l, r, i)
n = m - l + 1
if k == n:
return A[m]
elif k < n:
r = m - 1
else:
k = k - n
l = m + 1
def rand_select(A, k):
"""默认随机划分主元方式,k in [1, len(A)]
E[T(n)] = O(n)
"""
return _select(A, 0, len(A) - 1, k);
def _median(A, l, r):
"""对A[l..r]插入排序(原地)后选取其中位数位置"""
for j in xrange(l, r + 1):
k = A[j]
i = j
while i > l and A[i-1] > k:
A[i] = A[i-1]
i -= 1
A[i] = k
return l + int((r - l) * 0.5) # 下中位数
def _medianOfMedians(A, l, r):
"""中央値の中央値メソッド:
1. フロア (n/5) の 5 タプルに分割し、(n %5) を残します。
2. 各グループの中央値 (n/5) を見つけます。最初に各グループを挿入して並べ替えてから、中央値を選択します。
"""
if l == r:
return l<.> n = r - l + 1 # 要素数
m = int (ceil(n / 5.0)) # グループの数を分割します。各グループには 5 つの要素があります
for i in xrange(m):
# 各グループの開始位置と終了
sub_l = l + I * 5
sub_r = sub_l + 4
if sub_r & gt; r:
sub_r = r
# 要素が挿入され並べ替えられた後、中央値を選択します
sub_m = _median(A , sub_l, sub_r) # 中央値インデックス
A[j], A[sub_m] = A[sub_m], A[j]
return _medianOfMedians(A, l, l + m - 1) # 中央値中央値
def bfprt_select(A, k):
"""中央値の中央値法 (BFPRT アルゴリズム)
T(n) = O(n)
return _select (A, 0, len(A) - 1, k, _medianOfMedians);
def _median3(A, l, r):
"""3 数中央値法、l, r, (l+r)/2 3 数中央値を取る"""
キー = [l, c, r]
i = _median(keys, 0, 2)
キーを返す[i]
def median_select(A, k):
"""最悪のケースを排除するための 3 つの数値中央値メソッド"""
return _select(A, 0, len(A) - 1, k , _median3 );
if __name__ == '__main__':
ランダムにインポート、コピーから時間
print('データを準備しています...')
n = 1000000
nums = range(n)
print('準備完了!')
def timeit(fnc, *args, **kargs):
print('%s が処理を開始します' % fnc.__name__)
begtime = time.clock()
endtime = time. Clock()
print('%s には時間がかかります : %f' % (fnc.__name__, endtime - begtime))
return retval
test_methods = [rand_select, bfprt_select, median_select]
k =random.randrange(n) + 1
ダッシュ = '---' * 10
print(ダッシュ)
nums_new = copy(nums)
result = timeit(test, nums_new, k)
print('%d 番目に小さい要素: %d' % (k, result))