python以其优美的语法和方便的内置数据结构,赢得了不少程序员的亲睐。
其中有个很有用的数据结构,就是字典(dict),使用非常简单。说到遍历一个dict结构,我想大多数人都会想到 for key in dictobj 的方法,确实这个方法在大多数情况下都是适用的。但是并不是完全安全,请看下面这个例子:
#这里初始化一个dict
>>> d = {'a':1, 'b':0, 'c':1, 'd':0}
#本意是遍历dict,发现元素的值是0的话,就删掉
>>> for k in d:
... if d[k] == 0:
... del(d[k])
...
Traceback (most recent call last):
File "
RuntimeError: dictionary changed size during iteration
#结果抛出异常了,两个0的元素,也只删掉一个。
>>> d
{'a': 1, 'c': 1, 'd': 0}
>>> d = {'a':1, 'b':0, 'c':1, 'd':0}
#d.keys() 是一个下标的数组
>>> d.keys()
['a', 'c', 'b', 'd']
#这样遍历,就没问题了,因为其实其实这里遍历的是d.keys()这个list常量。
>>> for k in d.keys():
... if d[k] == 0:
... del(d[k])
...
>>> d
{'a': 1, 'c': 1}
#结果也是对的
>>>
其实,这个例子是我简化过的,我是在一个多线程的程序里发现这个问题的,所以,我的建议是:遍历dict的时候,养成使用 for k in d.keys() 的习惯。
不过,如果是多线程的话,这样就绝对安全吗?也不见得:当两个线程都取完d.keys()以后,如果两个线程都去删同一个key的话,先删的会成功,后删的那个肯定会报 KeyError ,这个看来只能通过其他方式来保证了。
另一篇:dict 两种遍历方式的性能对比
关于纠结dict遍历中带括号与不带括号的性能问题
for (d,x) in dict.items():
print "key:"+d+",value:"+str(x)
for d,x in dict.items():
print "key:"+d+",value:"+str(x)
带括号和不带括号性能测试结果:
测试结果
测试条数:15
带括号开始时间:2012-06-14 12:13:37.375000
带括号结束时间:2012-06-14 12:13:37.375000
时间间隔:0:00:00
不带括号开始时间:2012-06-14 12:13:37.375000
不带括号结束时间:2012-06-14 12:13:37.375000
时间间隔:0:00:00
测试条数:50
带括号开始时间:2012-06-14 12:13:57.921000
带括号结束时间:2012-06-14 12:13:57.921000
时间间隔:0:00:00
不带括号开始时间:2012-06-14 12:13:57.921000
不带括号结束时间:2012-06-14 12:13:57.937000
时间间隔:0:00:00.016000
测试条数:100
带括号开始时间:2012-06-14 11:53:57.453000
带括号结束时间:2012-06-14 11:53:57.468000
时间间隔:0:00:00.015000
不带括号开始时间:2012-06-14 11:53:57.468000
不带括号结束时间:2012-06-14 11:53:57.531000
时间间隔:0:00:00.063000
测试条数:150
带括号开始时间:2012-06-14 12:00:54.812000
带括号结束时间:2012-06-14 12:00:54.828000
时间间隔:0:00:00.016000
不带括号开始时间:2012-06-14 12:00:54.828000
不带括号结束时间:2012-06-14 12:00:54.921000
时间间隔:0:00:00.093000
测试条数:200
带括号开始时间:2012-06-14 11:59:54.609000
带括号结束时间:2012-06-14 11:59:54.687000
时间间隔:0:00:00.078000
不带括号开始时间:2012-06-14 11:59:54.687000
不带括号结束时间:2012-06-14 11:59:54.734000
时间间隔:0:00:00.047000
测试条数:500
带括号开始时间:2012-06-14 11:54:39.906000
带括号结束时间:2012-06-14 11:54:40.078000
时间间隔:0:00:00.172000
不带括号开始时间:2012-06-14 11:54:40.078000
不带括号结束时间:2012-06-14 11:54:40.125000
时间间隔:0:00:00.047000
测试条数:1000
带括号开始时间:2012-06-14 11:54:49.171000
带括号结束时间:2012-06-14 11:54:49.437000
时间间隔:0:00:00.266000
不带括号开始时间:2012-06-14 11:54:49.437000
不带括号结束时间:2012-06-14 11:54:49.609000
时间间隔:0:00:00.172000
テストストリップの数: 2000
括弧付きの開始時刻:2012-06-14 11:54:58.921000
括弧付きの終了時刻:2012-06-14 11:54:59.328000
時間間隔: 0:00:00.407000
括弧なしの開始時刻:2012-06-14 11:54:59.328000
括弧なしの終了時刻:2012-06-14 11:54:59.687000
時間間隔: 0 : 00:00.359000
テストストリップの数: 5000
括弧付きの開始時刻:2012-06-14 11:55:05.781000
括弧付きの終了時刻:2012-06-14 11:55:06.734000
時間間隔: 0:00:00.953000
括弧なしの開始時刻:2012-06-14 11:55:06.734000
括弧なしの終了時刻:2012-06-14 11:55:07.609000
時間間隔: 0 : 00:00.875000
テストストリップの数: 10000
括弧付きの開始時刻:2012-06-14 11:55:15.656000
括弧付きの終了時刻:2012-06-14 11:55:17.390000
時間間隔: 0:00:01.734000
括弧なしの開始時刻:2012-06-14 11:55:17.390000
括弧なしの終了時刻:2012-06-14 11:55:19.109000
時間間隔: 0 : 00:01.719000
テストストリップの数: 20000
括弧付きの開始時刻:2012-06-14 12:19:14.921000
括弧付きの終了時刻:2012-06-14 12:19:18.593000
時間間隔: 0:00:03.672000
括弧なしの開始時刻:2012-06-14 12:19:18.593000
括弧なしの終了時刻:2012-06-14 12:19:22.218000
時間間隔: 0 : 00:03.625000
辞書項目数が 200 未満の場合は括弧を使用した方がパフォーマンスが高くなりますが、データが 200 個を超えると括弧を使用しない場合の実行時間が短くなることがわかります。
以下はテストコードです:
テスト コード
#-*- コーディング: utf-8 - *-
日時、コーデックをインポート
dict = {}
for i in xrange(0,20000):
dict.setdefault("name"+str(i))
dict["name"+str(i)]="name"
s=codecs.open(r'c:\dict.txt','a', 'utf-8')
def write(des):
s.write(des.decode("utf-8"))
write("テスト項目の数:")
write(str(len(dict))+"rn")
write("括弧付きの開始時刻:")
a=datetime。 datetime .now()
s.write(str(a)+"rn")
for (d,x) in dict.items():
print "key:"+d+",value:"+str(x)
write("括弧付き終了時刻:")
b=datetime.datetime.now()
write(str(b)+"rn")
write("時間間隔:")
write(str(b-a)+"rn")
write("括弧なしの開始時刻:")
c=datetime.datetime.now()
write(str(c)+"rn")
辞書項目の d,x 。 ():
print "key:"+d+",value:"+str(x)
write("括弧なしの終了時刻:")
d=datetime.datetime.now()
write(str(d)+"rn")
write("時間間隔:")
write(str(d-c)+"rn")
write("rn")
s .close()
中国語の文字化けの問題を解決する良い解決策はありますか?

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。
