メタのラマは、GPT-3.5などのモデルに対抗することを目指して、大規模な言語モデル(LLM)開発の急増を引き起こしました。 オープンソースコミュニティは、ますます強力なモデルを急速に生み出しましたが、これらの進歩には課題はありませんでした。 多くのオープンソースLLMには制限的なライセンスがあり(調査のみ)、微調整にかなりの予算が必要であり、展開に費用がかかりました。
llamaの新しいイテレーションは、これらの問題に商業ライセンスと、メモリが限られている消費者グレードGPUの微調整を可能にする新しい方法で対処しています。これはAIを民主化し、さらに小規模な組織がテーラードモデルを作成できるようにします。このガイドは、リソースの制約を克服するための効率的な手法を利用して、Google Colabで微調整されたLlama-2を示しています。メモリの使用量を最小限に抑え、トレーニングを加速する方法論を調べます。
dall-e 3
を使用して著者によって生成された画像 微調整llama-2:ステップバイステップガイド
このチュートリアルは、T4 GPU(Google ColabまたはKaggleで入手可能)の70億パラメーターllama-2モデルを微調整します。 T4の16GB VRAMは、特にQlora(4ビット精度)を使用して、パラメーター効率の高い微調整を必要とします。ハグする顔のエコシステム(変圧器、加速、PEFT、TRL、bitsandBytes)を利用します。 1。セットアップ:
必要なライブラリをインストールする:
インポートモジュール:
<code>%%capture %pip install accelerate peft bitsandbytes transformers trl</code>2。モデルとデータセットの選択:
<code>import os import torch from datasets import load_dataset from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, pipeline, logging, ) from peft import LoraConfig from trl import SFTTrainer</code>
(公式のllama-2に容易にアクセス可能な等価)を基本モデルとして、を小規模なトレーニングデータセットとして使用します。
NousResearch/Llama-2-7b-chat-hf
ハグする顔モデルとデータセットを示す画像は、オリジナルと同じようにここに含まれています。
mlabonne/guanaco-llama2-1k
<code>base_model = "NousResearch/Llama-2-7b-chat-hf" guanaco_dataset = "mlabonne/guanaco-llama2-1k" new_model = "llama-2-7b-chat-guanaco"</code>
データセットをロードします:
qlora:を使用して4ビット量子化を構成します
4ビット量子化でllama-2モデルをロードします:
<code>dataset = load_dataset(guanaco_dataset, split="train")</code>トークン剤をロードします:
<code>compute_dtype = getattr(torch, "float16") quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=False, )</code>
qloraを示す画像は、オリジナルと同じようにここに含まれています
<code>model = AutoModelForCausalLM.from_pretrained( base_model, quantization_config=quant_config, device_map={"": 0} ) model.config.use_cache = False model.config.pretraining_tp = 1</code>4。 PEFT構成: 効率的な微調整のためのPEFTパラメーターを定義します:
<code>tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right"</code>
5。トレーニングパラメーター:
トレーニングハイパーパラメーター(出力ディレクトリ、エポック、バッチサイズ、学習レートなど)を設定します。 詳細はオリジナルと同じです。
6。 SFTでの微調整:
<code>peft_params = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias="none", task_type="CAUSAL_LM", )</code>
TRLライブラリからを使用して、監視された微調整を行います。 トレーニングの進行とモデルの保存を示す
スクリーンショットは、オリジナルと同じようにここに含まれています。
7。評価:
transformers
パイプラインを使用して、微調整されたモデルをテストします。例は、オリジナルと同じように提供されています。
8。テンソルボードの視覚化:
トレーニングメトリックを監視するためのテンソルボードを起動します
<code>%%capture %pip install accelerate peft bitsandbytes transformers trl</code>
テンソルボードのスクリーンショットは、オリジナルと同じようにここに含まれています 結論:
このガイドは、限られたハードウェアで効率的なllama-2微調整を紹介しています。 Qloraやその他のテクニックを使用すると、高度なLLMがより多くの視聴者がアクセスできます。 その他のリソースと学習パスは、オリジナルと同様に、最後に言及されていますが、マーケティングの呼び出しはありません。
以上が微調整llama2:大規模な言語モデルをカスタマイズするためのステップバイステップガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

AIエージェントは現在、大小さまざまな企業の一部です。病院でフォームに記入したり、法的文書をチェックしたり、ビデオ映像を分析したり、カスタマーサポートを処理したりすることから、あらゆる種類のタスクにAIエージェントがあります。仲間

人生は良いです。 予測可能です。分析的な心がそれを好む方法です。あなたは今日、オフィスに飛び込んで、土壇場の事務処理を終えました。その直後、あなたはあなたのパートナーと子供を晴れたhへの適切な休暇のために連れて行きます

しかし、科学的なコンセンサスにはしゃっくりとゴッチャがあり、おそらくより賢明なアプローチは、同意としても知られる証拠の収束の使用によるものです。 それについて話しましょう。 革新的なAIブレークスルーのこの分析は私の一部です

OpenaiもStudio Ghibliも、この話のコメントのリクエストに応答しませんでした。しかし、彼らの沈黙は、創造的経済におけるより広く、より複雑な緊張を反映しています。生成AIの時代において著作権はどのように機能するべきですか? のようなツール付き

コンクリートとソフトウェアの両方は、必要に応じて堅牢なパフォーマンスを得るために亜鉛メッキできます。どちらもストレステストを受ける可能性があり、両方とも時間の経過とともに亀裂や亀裂に苦しむことがあります。

ただし、レポートの多くは非常に表面レベルで停止します。 Windsurfが何であるかを把握しようとしている場合、Google検索エンジンの上部に表示されるシンジケートコンテンツから必要なものを手に入れることができるかもしれません。

重要な事実 オープンレターに署名するリーダーには、Adobe、Accenture、AMD、American Airlines、Blue Origin、Cognizant、Dell、Dropbox、IBM、LinkedIn、Lyft、Microsoft、Salesforce、Uber、Yahoo、Zoomなど、注目度の高い企業のCEOが含まれます。

そのシナリオはもはや投機的なフィクションではありません。対照実験では、アポロの研究では、GPT-4が違法なインサイダー取引計画を実行し、それについて調査官に嘘をついていることが示されました。エピソードは、2つの曲線が上昇しているという鮮明なリマインダーです


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

WebStorm Mac版
便利なJavaScript開発ツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター
