大規模な言語モデル(LLMS)の台頭は、当初、印象的なスケールと能力で世界を魅了しました。 ただし、より小さく、より効率的な言語モデル(SLM)は、そのサイズがすべてではないことをすぐに証明しています。 これらのコンパクトで驚くほど強力なSLMが2025年にセンターステージを獲得しており、2つの主要な候補者はPHI-4とGPT-4O-MINIです。 この比較は、4つの重要なタスクに基づいて、相対的な長所と短所を調査します。
目次
- PHI-4対GPT-4O-MINI:クイックルック
- アーキテクチャの違いとトレーニング方法
- ベンチマークパフォーマンスの比較
- 詳細な比較
- コードの例:PHI-4およびGPT-4O-MINI
- タスク1:推論テスト
- タスク2:コーディングチャレンジ
- タスク3:クリエイティブライティングプロンプト
- タスク4:テキスト要約
- 結果の要約
- 結論
- よくある質問
PHI-4対GPT-4O-MINI:クイックルック Microsoft Researchの作成であるPHI-4は、革新的な方法で生成された合成データを利用して、推論ベースのタスクを優先します。このアプローチは、STEMフィールドでの能力を高め、推論のためのトレーニングを合理化します。 Openaiによって開発された
GPT-4O-MINIは、マルチモーダルLLMSのマイルストーンを表しています。 人間のフィードバック(RLHF)からの補強学習を活用して、さまざまなタスク全体でパフォーマンスを改善し、さまざまな試験や多言語ベンチマークで印象的な結果を達成しています。 アーキテクチャの違いとトレーニング方法PHI-4:推論最適化
PHIモデルファミリーに基づいて構築されたPHI-4は、140億パラメーターを備えたデコーダーのみの変圧器アーキテクチャを採用しています。 そのユニークなアプローチは、マルチエージェントのプロンプトや自己リビジョンなどの手法を使用して、合成データ生成に集中しています。 トレーニングは、出力の洗練のための直接選好最適化(DPO)を組み込んだ、純粋なスケールよりも品質を強調しています。 主な機能には、合成データの優位性と拡張コンテキストの長さ(最大16Kトークン)が含まれます。gpt-4o-mini:マルチモーダルスケーラビリティ
OpenAIのGPTシリーズのメンバーであるGPT-4O-MINIは、公開されているデータとライセンスされたデータの組み合わせで事前に訓練された変圧器ベースのモデルです。その重要な差別化要因は、マルチモーダル機能であり、テキストと画像入力の両方を処理します。 OpenAIのスケーリングアプローチにより、さまざまなモデルサイズにわたって一貫した最適化が保証されます。 主な機能には、事実性の向上と予測可能なスケーリング方法のためのRLHFが含まれます。 詳細については、Openaiをご覧ください。
ベンチマークパフォーマンスの比較
PHI-4:STEMおよび推論の専門化PHI-4は、ベンチマークの推論に関する例外的なパフォーマンスを示し、頻繁に大きなモデルを上回ります。合成STEMデータに焦点を当てると、顕著な結果が得られます
- GPQA(大学院レベルのSTEM Q&A): gpt-4o-mini。
- 数学ベンチマーク:高得点を達成し、構造化された推論能力を強調しています。
- 汚染防止テスト:2024年11月のAMC-10/12の数学テストのようなベンチマークを使用した堅牢な一般化を示します。
GPT-4O-MINIは汎用性を紹介し、さまざまな専門的および学術的なテストで人間レベルのパフォーマンスを達成しています:
- 試験:
- 多くの専門的および学術試験で人間レベルのパフォーマンスを実証します。 mmlu(大規模なマルチタスク言語の理解): 英語以外の言語を含む多様な主題で以前のモデルよりも優れています。
- 詳細な比較
PHI-4は、STEMと推論を専門としており、優れた性能のために合成データを活用しています。 GPT-4O-MINIは、多言語の機能と専門的な試験に優れている、従来のベンチマーク全体でバランスの取れたスキルセットを提供します。 これは、対照的なデザインの哲学、ドメインマスタリーのPHI-4、一般的な習熟度のためのGPT-4O-MINIを強調しています。
コードの例:PHI-4およびGPT-4O-MINI
phi-4
gpt-4o-mini
# Install necessary libraries (if not already installed) !pip install transformers torch huggingface_hub accelerate from huggingface_hub import login from IPython.display import Markdown # Log in using your Hugging Face token login(token="your_token") import transformers # Load the Phi-4 model phi_pipeline = transformers.pipeline( "text-generation", model="microsoft/phi-4", model_kwargs={"torch_dtype": "auto"}, device_map="auto", ) # Example prompt and generation messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "What is the capital of France?"}, ] outputs = phi_pipeline(messages, max_new_tokens=256) print(outputs[0]['generated_text'][0]['content'])
(タスク1-4とそれらの分析を詳細に説明する次のセクションは、元の入力の構造と内容を反映していますが、長さの制約を改善するためのマイナーなフレージング調整を行います。これらのセクションを省略しました。
!pip install openai from getpass import getpass OPENAI_KEY = getpass('Enter Open AI API Key: ') import openai from IPython.display import Markdown openai.api_key = OPENAI_KEY def get_completion(prompt, model="gpt-4o-mini"): messages = [{"role": "user", "content": prompt}] response = openai.ChatCompletion.create( model=model, messages=messages, temperature=0.0, ) return response.choices[0].message.content prompt = "What is the meaning of life?" response = get_completion(prompt) print(response)結果の概要
(このセクションには、4つのタスクにわたる各モデルのパフォーマンスを要約するテーブルが含まれています。)
結論
PHI-4とGPT-4O-MINIの両方が、SLMテクノロジーの重要な進歩を表しています。 PHI-4の推論およびSTEMタスクの専門化により、特定の技術的アプリケーションに最適ですが、GPT-4o-Miniの汎用性とマルチモーダル機能は、より広範な用途に対応しています。 最適な選択は、ユーザーの特定のニーズと目前のタスクの性質に完全に依存します。
よくある質問(このセクションには、2つのモデルに関する一般的な質問への回答が含まれます。)
以上がPHI-4対GPT-4O-MINI対決の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

法的技術革命は勢いを増し、法律専門家にAIソリューションを積極的に受け入れるように促しています。 受動的抵抗は、競争力を維持することを目指している人にとってはもはや実行可能な選択肢ではありません。 なぜテクノロジーの採用が重要なのですか? 法律専門家

多くの人は、AIとの相互作用が匿名であると仮定しており、人間のコミュニケーションとはまったく対照的です。 ただし、AIはすべてのチャット中にユーザーを積極的にプロファイルします。 すべてのプロンプト、すべての単語が分析および分類されます。 AI Revoのこの重要な側面を探りましょう

成功した人工知能戦略は、強力な企業文化サポートから分離することはできません。 Peter Druckerが言ったように、事業運営は人々に依存しており、人工知能の成功も依存しています。 人工知能を積極的に受け入れる組織の場合、AIに適応する企業文化を構築することが重要であり、AI戦略の成功または失敗さえ決定します。 ウェストモンローは最近、繁栄するAIに優しい企業文化を構築するための実用的なガイドをリリースしました。ここにいくつかの重要なポイントがあります。 1. AIの成功モデルを明確にする:まず第一に、AIがどのようにビジネスに力を与えることができるかについての明確なビジョンが必要です。理想的なAI操作文化は、人間とAIシステム間の作業プロセスの自然統合を実現できます。 AIは特定のタスクが得意であり、人間は創造性と判断が得意です

メタはAIアシスタントアプリケーションをアップグレードし、ウェアラブルAIの時代が来ています! ChatGPTと競合するように設計されたこのアプリは、テキスト、音声インタラクション、画像生成、Web検索などの標準的なAI機能を提供しますが、初めてジオロケーション機能を追加しました。これは、メタAIがあなたがどこにいるのか、あなたがあなたの質問に答えるときにあなたが何を見ているのかを知っていることを意味します。興味、場所、プロファイル、アクティビティ情報を使用して、これまで不可能な最新の状況情報を提供します。このアプリはリアルタイム翻訳もサポートしており、レイバンメガネのAIエクスペリエンスを完全に変更し、その有用性を大幅に改善しました。 外国映画への関税の賦課は、メディアや文化に対する裸の力の行使です。実装された場合、これはAIと仮想生産に向かって加速します

人工知能は、サイバー犯罪の分野に革命をもたらし、新しい防御スキルを学ぶことを強いています。サイバー犯罪者は、ディープフォーファリーやインテリジェントなサイバー攻撃などの強力な人工知能技術を、前例のない規模で詐欺と破壊に使用しています。過去1年間、グローバルビジネスの87%がAIサイバー犯罪の標的を絞っていると報告されています。 それでは、どうすればこの賢い犯罪の波の犠牲者になることを避けることができますか?リスクを特定し、個人および組織レベルで保護対策を講じる方法を探りましょう。 サイバー犯罪者が人工知能をどのように使用するか 技術が進むにつれて、犯罪者は、個人、企業、政府を攻撃する新しい方法を常に探しています。人工知能の広範な使用は最新の側面かもしれませんが、その潜在的な害は前例のないものです。 特に、人工知能

人工知能(AI)と人間の知能(NI)の複雑な関係は、フィードバックループとして最もよく理解されています。 人間はAIを作成し、人間の活動によって生成されたデータでそれをトレーニングして、人間の能力を強化または複製します。 このai

人類の最近の声明は、最先端のAIモデルを取り巻く理解の欠如を強調しており、専門家の間で激しい議論を引き起こしました。 この不透明度は本物の技術的危機ですか、それとも単により多くのソフへの道の一時的なハードルですか

インドは、言語の豊かなタペストリーを備えた多様な国であり、地域間のシームレスなコミュニケーションを持続的な課題にしています。ただし、SarvamのBulbul-V2は、高度なテキストからスピーチ(TTS)Tでこのギャップを埋めるのに役立ちます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境
