顔のテキスト生成推論(TGI)を抱き締める力を活用:あなたのローカルLLMサーバー
大規模な言語モデル(LLM)は、特にテキスト生成においてAIに革命をもたらしています。 これにより、LLMの展開を簡素化するために設計されたツールが急増しました。 Faceのテキスト生成の推論(TGI)を抱きしめることは際立っており、LLMをサービスとしてローカルに実行するための強力で制作可能なフレームワークを提供します。 このガイドでは、TGIの機能を調査し、洗練されたAIテキスト生成のためにそれを活用する方法を示しています。
顔を抱きしめることを理解するtgiRustおよびPythonフレームワークであるTGIは、ローカルマシンでのLLMの展開とサービングを可能にします。 hfoilv1.0の下でライセンスされているため、補足ツールとして商業使用に適しています。 その重要な利点には、次のことが含まれます
- TGIは、スターコダー、ブルーム、GPT-Neox、Llama、T5などのモデルのテンソル並列性と動的バッチを使用してパフォーマンスを最適化します。
- 効率的なリソースの使用量:継続的なバッチと最適化コードは、複数のリクエストを同時に処理しながらリソース消費を最小限に抑えます。
- 柔軟性:透かし、バイアス制御のためのロジットワーピング、停止シーケンスなどの安全性とセキュリティ機能をサポートします。 TGIは、LLAMA、FALCON7B、MISTRALなどのLLMをより高速に実行するための最適化されたアーキテクチャを誇っています(完全なリストのドキュメントを参照)。
- なぜ抱きしめる顔tgi?を選ぶのか 顔は、オープンソースLLMSの中央のハブです。 以前は、多くのモデルがローカルで使用するにはリソースが集中しすぎており、クラウドサービスが必要でした。 ただし、QloraやGPTQの量子化などの進歩により、ローカルマシンでいくつかのLLMが管理可能になりました。 TGIは、LLMスタートアップ時間の問題を解決します。 モデルの準備を整えることで、即時の応答を提供し、長い待ち時間を排除します。 エンドポイントが一流の言語モデルの範囲に簡単にアクセスできることを想像してください。
ハグチャット
openAssistant
nat.dev
- TGIは現在、ARMベースのGPU Mac(M1以降)と互換性がありません。
- 顔を抱きしめるセットアップtgi
- 2つの方法が表示されます:ゼロからDockerの使用(簡単にするために推奨)。
方法1:ゼロから(より複雑)
- rust:
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
のインストール
- Python仮想環境を作成:
conda create -n text-generation-inference python=3.9 && conda activate text-generation-inference
- インストールprotoc(バージョン21.12の推奨):(
sudo
)簡潔に省略された手順は、元のテキストを参照してください。 githubリポジトリをクローンします: -
git clone https://github.com/huggingface/text-generation-inference.git
- をインストールします
cd text-generation-inference/ && BUILD_EXTENSIONS=False make install
- をインストールします
の使用
Dockerがインストールされて実行されていることを確認してください- (互換性を最初にチェック)Dockerコマンドを実行します(Falcon-7Bを使用した例):
- 単一のgpuを使用している場合は を
- に置き換えます。
volume=$PWD/data && sudo docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9 --model-id tiiuae/falcon-7b-instruct --num-shard 1 --quantize bitsandbytes
アプリケーションでTGIを使用する"all"
"0"
TGIを起動した後、POSTリクエストを使用して
)を使用して対話します。 PythonとCurlを使用した例は、元のテキストに記載されています。
pythonライブラリ()は、相互作用を簡素化します 実用的なヒントとさらなる学習
トークン化、注意メカニズム、トランスアーキテクチャに精通してください。 モデルの最適化:/generate
/stream
text-generation
pip install text-generation
LLMの基礎を理解する:- 適切なモデルの選択、トークナーのカスタマイズ、微調整など、モデルを準備して最適化する方法を学びます。
- 生成戦略:さまざまなテキスト生成戦略(貪欲な検索、ビーム検索、トップKサンプリング)を探索します。
- 結論 Face TGIのハグは、LLMをローカルに展開およびホストするユーザーフレンドリーな方法を提供し、データプライバシーやコスト制御などのメリットを提供します。強力なハードウェアを必要としますが、最近の進歩により多くのユーザーが実行可能にしています。 高度なLLMの概念とリソースのさらなる調査(元のテキストに記載)は、継続的な学習に強くお勧めします。
- rust:
以上がLLMS用の顔のテキスト生成推論ツールキットを抱き締める-AIのゲームチェンジャーの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

AIは、野火の回復許可を合理化します オーストラリアのハイテク企業ArchistarのAIソフトウェアは、機械学習とコンピュータービジョンを利用して、地域の規制に準拠するための建築計画の評価を自動化します。この前検証は重要です

エストニアのデジタル政府:米国のモデル? 米国は官僚的な非効率性と闘っていますが、エストニアは説得力のある代替品を提供しています。 この小さな国は、AIを搭載した、ほぼ100%デジタル化された市民中心の政府を誇っています。 これはそうではありません

結婚式を計画することは記念碑的な仕事であり、しばしば最も組織化されたカップルでさえ圧倒されます。 この記事は、AIの影響に関する進行中のフォーブスシリーズの一部(こちらのリンクを参照)で、生成AIが結婚式の計画にどのように革命をもたらすことができるかを調べます。 結婚式のpl

政府は、さまざまな確立されたタスクにそれらを利用している一方で、企業はAIエージェントを販売のためにますます活用しています。 ただし、消費者の支持者は、個人がターゲットのターゲットに対する防御として自分のAIエージェントを所有する必要性を強調しています

Googleはこのシフトをリードしています。その「AIの概要」機能はすでに10億人以上のユーザーにサービスを提供しており、誰もがリンクをクリックする前に完全な回答を提供しています。[^2] 他のプレイヤーも速く地位を獲得しています。 ChatGpt、Microsoft Copilot、およびPE

2022年、彼はソーシャルエンジニアリング防衛のスタートアップDoppelを設立してまさにそれを行いました。そして、サイバー犯罪者が攻撃をターボチャージするためのより高度なAIモデルをハーネスするにつれて、DoppelのAIシステムは、企業が大規模に戦うのに役立ちました。

出来上がりは、適切な世界モデルとの対話を介して、生成AIとLLMを実質的に後押しすることができます。 それについて話しましょう。 革新的なAIブレークスルーのこの分析は、最新のAIで進行中のForbes列のカバレッジの一部であり、

労働者2050年。全国の公園は、ノスタルジックなパレードが街の通りを通り抜ける一方で、伝統的なバーベキューを楽しんでいる家族でいっぱいです。しかし、お祝いは現在、博物館のような品質を持っています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。
