GPTCacheは、ChatGPTのような大規模な言語モデル(LLM)アプリケーション向けのオープンソースフレームワークです。以前に生成されたLLM応答を同様のクエリに保存します。 LLMに頼る代わりに、アプリケーションはキャッシュをチェックして、時間を節約するための関連する応答をチェックします。
このガイドでは、Gptcacheがどのように機能し、プロジェクトで効果的に使用できるかを調査します。gptcacheとは?
GPTCacheは、GPT-3のような大規模な言語モデル(LLM)のパフォーマンスと効率を改善するために設計されたキャッシュシステムです。 LLMSが以前に生成されたクエリを保存して時間と労力を節約するのに役立ちます。
同様のクエリが再び登場すると、LLMは新しい応答をゼロから開発する代わりにキャッシュした応答を引き上げることができます。他のツールとは異なり、GptCacheはセマンティックキャッシングで動作します。セマンティックキャッシュは、クエリ/リクエストの目的を保持します。その結果、以前に保存されたクエリがリコールされると、その結果はサーバーのワークロードを減らし、キャッシュヒット率を改善します。 GPTCACHE
を使用することの利点GPTCacheの背後にある主なアイデアは、LLMの推論プロセス中に生成された中間計算を保存および再利用することです。そうすることにはいくつかの利点があります:
LLM API呼び出しのコスト削減
ほとんどのLLMSは、処理されたトークンの数に基づいて、リクエストごとに特定の料金を請求します。それはgptcacheが役立つときです。同様のクエリに対して以前に生成された応答を提供することにより、LLM API呼び出しの数を最小化します。その結果、これにより、追加のLLMコールコストを削減することでコストを節約できます。
応答時間と効率の改善キャッシュから応答を取得することは、LLMを照会することでゼロから生成するよりも大幅に高速です。速度を高め、応答時間を改善します。効率的な応答は、LLM自体の負担を軽減し、他のタスクに割り当てることができるスペースを解放します。 より高速なアプリケーションパフォーマンスによるユーザーエクスペリエンスの強化
コンテンツの質問を検索しているとします。あなたが尋ねるすべての質問は、AIが答えるのに何年もかかります。なぜ?ほとんどのLLMサービスは、設定期間内にリクエスト制限を実施するためです。これらの制限を超えることは、制限がリセットされるまでさらに要求をブロックします。これにより、サービスの中断が発生します。
chatgptは、その応答を生成することで到達できます
これらの問題を回避するために、Gptchacheは同様の質問に対する以前の回答をキャッシュします。何かを求めると、それはすぐにそのメモリをチェックし、情報をフラッシュで配信します。その結果、あなたは通常よりも短い時間であなたの応答を得ます。
単純に言えば、キャッシュされた応答を活用することにより、GPTCacheはLLMベースのアプリケーションが応答性と効率的になることを保証します。
gptcacheのセットアップ
インストールと構成
このコードを使用してgptcacheパッケージをインストールします。
! pip install -q gptcache次に、gptcacheをアプリケーションにインポートします。
from gptcache import GPTCache cache = GPTCache() # keep the mode defaultそれだけで、あなたは完了です!
LLMS
との統合LLMアダプターを介してGPTCacheをLLMSと統合できます。現在のところ、それは2つの大きな言語モデルアダプターのみと互換性があります。
openai
- langchain
- 両方のアダプターと統合する方法は次のとおりです Openai Chatgpt API
gptcache
gptcacheをOpenaiと統合するには、キャッシュを初期化し、gptcache.AdapterからOpenAIをインポートします。
サンプルコードを実行する前に、echo $ openai_api_keyを実行してOpenai_Api_key環境変数を設定します。
まだ設定されていない場合は、unix/linux/macosシステムでexport openai_api_key = your_api_keyを使用するか、openai_api_key = your_api_key on windows systemsを使用して設定できます。from gptcache import cache from gptcache.adapter import openai cache.init() cache.set_openai_key()それから、ChatGPTに2つの正確な質問をすると、ChatGptをもう一度尋ねるのではなく、キャッシュから2番目の質問への回答を取得します。
同様の検索キャッシュの例コード:
出力に表示されるものは次のとおりです
2回目、GPTは同じ質問に答えるのにほぼ0秒かかりました
import time def response_text(openai_resp): return openai_resp['choices'][0]['message']['content'] print("Cache loading.....") # To use GPTCache, that's all you need # ------------------------------------------------- from gptcache import cache from gptcache.adapter import openai cache.init() cache.set_openai_key() # ------------------------------------------------- question = "what's github" for _ in range(2): start_time = time.time() response = openai.ChatCompletion.create( model='gpt-3.5-turbo', messages=[ { 'role': 'user', 'content': question } ], ) print(f'Question: {question}') print("Time consuming: {:.2f}s".format(time.time() - start_time)) print(f'Answer: {response_text(response)}\n')Langchainを搭載した
gptcache
別のLLMを使用する場合は、Langchainアダプターを試してください。 GptcaheをLangchain:と統合する方法は次のとおりです
gptcacheがプロジェクトをどのようにサポートできるかを見てみましょう。
基本操作
from langchain.globals import set_llm_cache from langchain_openai import OpenAI # To make the caching really obvious, lets use a slower model. llm = OpenAI(model_name="gpt-3.5-turbo-instruct", n=2, best_of=2)LLMクエリの固有の複雑さとばらつきのために
llmsは効果がなくなり、キャッシュヒット率が低くなります。 この制限を克服するために、GPTCacheはセマンティックキャッシュ戦略を採用しています。セマンティックキャッシングストアは、同様のクエリまたは関連するクエリ - キャッシュヒットの確率を増やし、全体的なキャッシュ効率を高める。 gptcacheは、埋め込みアルゴリズムを活用して、クエリを埋め込みと呼ばれる数値表現に変換します。これらの埋め込みはベクターストアに保存され、効率的な類似性検索を可能にします。このプロセスにより、GPTCacheはキャッシュストレージから類似または関連するクエリを識別および取得できます。 モジュラー設計を使用すると、要件に応じてセマンティックキャッシュの実装をカスタマイズできます。
ただし、誤ったキャッシュのヒットとキャッシュミスは、セマンティックキャッシュで発生する場合があります。このパフォーマンスを監視するために、GPTCacheは3つのパフォーマンスメトリックを提供します- ヒット比充填リクエストにおけるキャッシュの成功率を測定します。値が高いとパフォーマンスが向上します
- レイテンシキャッシュからデータを取得するのにかかった時間を示します。 recall
- は、正しく提供されたキャッシュクエリの割合を示しています。より高いパーセンテージは、より良い精度を反映しています。 高度な機能
初期クエリ、プロンプト、応答、アクセスタイムスタンプなどのすべての基本的なデータ要素は、「データマネージャー」に保存されます。 GPTCacheは現在、次のキャッシュストレージオプションをサポートしています
sqlite
- mysql
- postgreSqlデータベース。
- 「NOSQL」データベースはまだサポートしていませんが、すぐに組み込まれる予定です。 立ち退きポリシーを使用して ただし、GPTCacheは、指定された制限またはカウントに基づいて、キャッシュストレージからデータを削除できます。キャッシュサイズを管理するには、最近使用されていない(LRU)立ち退きポリシーまたはFirst In、First Out(FIFO)アプローチのいずれかを実装できます。
は、最近アクセスされていないアイテムを立ち退かせます。
その間、
fifo eviction policy- は、最も長い間存在していたキャッシュされたアイテムを破棄します。
- 応答パフォーマンスの評価 GPTCacheは「評価」関数を使用して、キャッシュされた応答がユーザークエリに対処するかどうかを評価します。そのためには、3つの入力が必要です
- ユーザーのデータのリクエスト 評価されているキャッシュされたデータ
他の2つの関数を使用することもできます
- ’
- log_time_func ’では、「
- embeddings 」を生成したり、キャッシュを実行したりするなど、集中的なタスクの期間を記録および報告できます。
- ' signily_threshold、
テキストデータの高次元表現
)が一致するほど類似している場合を決定するためのしきい値を定義できます。- gptcacheのベストプラクティスとトラブルシューティング gptcacheがどのように機能するかを知っているので、その利点を確実に享受するためのいくつかのベストプラクティスとヒントがあります。 gptcacheパフォーマンスの最適化 以下に概説するように、GPTCacheのパフォーマンスを最適化するために実行できるいくつかのステップがあります。 1。プロンプトを明確にします
-
LLMにどのように促され、GPTCacheがどの程度うまく機能するかに影響を与えます。したがって、キャッシュに到達する可能性を高めるために、フレージングを一貫性に保ちます。
たとえば、「アカウントにログインできない」などの一貫したフレーズを使用します。これにより、GPTCacheは「パスワードを忘れた」や「アカウントログインの問題」など、同様の問題をより効率的に認識しています。
2。組み込みの追跡メトリックを使用してください
ヒット率、リコール、レイテンシなどの組み込みメトリックを監視して、キャッシュのパフォーマンスを分析します。より高いヒット率は、キャッシュが保存されたデータから要求されたコンテンツをより効果的に提供し、その有効性を理解するのに役立つことを示しています。
3。大規模なユーザーベースを備えたLLMアプリケーション用のGPTCACHEのスケーリングより大きなLLMアプリケーションのGPTCacheをスケーリングするには、同様のプロファイルを持つユーザーグループに同じキャッシュを利用する共有キャッシュアプローチを実装します。ユーザープロファイルを作成し、それらを分類して同様のユーザーグループを識別します。
同じプロファイルグループのユーザーに共有キャッシュをレバレッジすると、キャッシュの効率とスケーラビリティに関して良好なリターンが得られます。 これは、同じプロファイルグループ内のユーザーが、キャッシュされた応答の恩恵を受けることができる関連クエリを持っている傾向があるためです。ただし、ユーザーをグループ化し、共有キャッシュの利点を正確に最大化するには、適切なユーザープロファイリングと分類手法を使用する必要があります。 一般的なgptcacheの問題のトラブルシューティングgptcacheに苦労している場合、問題のトラブルシューティングに実行できるいくつかの手順があります。
1。キャッシュ無効2。キャッシュされた応答への過度の依存
GPTCacheは効率を改善できますが、キャッシュされた応答への過度の依存は、キャッシュが適切に無効にされない場合、情報の不正確な情報につながる可能性があります。 この目的のために、同様のクエリであっても、アプリケーションがLLMから新たな応答を取得することがあることを確認してください。これにより、重要なまたは時間に敏感な情報を扱う際の回答の正確性と品質が維持されます。
3。キャッシュの品質を無視これらの潜在的な落とし穴とそのソリューションを理解することにより、GPTCacheがLLMを搭載したアプリケーションのパフォーマンスと費用効率を効果的に改善することを保証できます。
ラップアップLLMSが初めての場合、これらのリソースが役立つ場合があります:
- 大規模な言語モデルの開発 LangchainおよびGPT
- を使用したLLMアプリケーションの構築 pytorchでLLMをトレーニングします
- cohere apiを使用してLLMを使用します
- LANGCHAIN faqs
キャッシュを初期化してGPTCacheを実行してOpenaI APIをインポートするにはどうすればよいですか?
CHATGPTに2回同じ質問をするとどうなりますか?
! pip install -q gptcachegptcacheは、以前の応答をキャッシュに保存し、APIに新しいリクエストを行う代わりにキャッシュから回答を取得します。したがって、2番目の質問に対する答えは、ChatGPTを再度リクエストすることなくキャッシュから得られます。
以上がGPTCacheチュートリアル:LLMアプリケーションの効率の向上の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

オンデバイスAIの力を活用:個人的なチャットボットCLIの構築 最近では、個人的なAIアシスタントの概念はサイエンスフィクションのように見えました。 ハイテク愛好家のアレックスを想像して、賢くて地元のAI仲間を夢見ています。

AI4MHの最初の発売は2025年4月15日に開催され、有名な精神科医および神経科学者であるLuminary Dr. Tom Insel博士がキックオフスピーカーを務めました。 Insel博士は、メンタルヘルス研究とテクノでの彼の傑出した仕事で有名です

「私たちは、WNBAが、すべての人、プレイヤー、ファン、企業パートナーが安全であり、大切になり、力を与えられたスペースであることを保証したいと考えています」とエンゲルバートは述べ、女性のスポーツの最も有害な課題の1つになったものに取り組んでいます。 アノ

導入 Pythonは、特にデータサイエンスと生成AIにおいて、プログラミング言語として優れています。 大規模なデータセットを処理する場合、効率的なデータ操作(ストレージ、管理、アクセス)が重要です。 以前に数字とstをカバーしてきました

潜る前に、重要な注意事項:AIパフォーマンスは非決定論的であり、非常にユースケース固有です。簡単に言えば、走行距離は異なる場合があります。この(または他の)記事を最終的な単語として撮影しないでください。これらのモデルを独自のシナリオでテストしないでください

傑出したAI/MLポートフォリオの構築:初心者と専門家向けガイド 説得力のあるポートフォリオを作成することは、人工知能(AI)と機械学習(ML)で役割を確保するために重要です。 このガイドは、ポートフォリオを構築するためのアドバイスを提供します

結果?燃え尽き症候群、非効率性、および検出とアクションの間の隙間が拡大します。これは、サイバーセキュリティで働く人にとってはショックとしてはありません。 しかし、エージェントAIの約束は潜在的なターニングポイントとして浮上しています。この新しいクラス

即時の影響と長期パートナーシップ? 2週間前、Openaiは強力な短期オファーで前進し、2025年5月末までに米国およびカナダの大学生にChatGpt Plusに無料でアクセスできます。このツールにはGPT ‑ 4o、Aが含まれます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

Dreamweaver Mac版
ビジュアル Web 開発ツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません
