検索
ホームページバックエンド開発Python チュートリアルT4 を使用した Google Colab での Kokoro TTS 音声合成の探索

Exploring Kokoro TTS Voice Synthesis on Google Colab with T4

kokoro-82m:高性能のテキスト転送音声(TTS)モデル探査

Kokoro-82Mは、高品質のオーディオを生成できる高性能TTSモデルです。単純なテキスト変換をサポートし、オーディオファイルアプリケーションの権利を保持することにより、音声合成を簡単に合成できます。

kokoro-82m バージョン0.23から始まり、ココロ-82Mも日本人をサポートしています。次のリンクから簡単に試すことができます。

[ココロTTSを抱きしめる顔のスペースについて] しかし、日本語のトーンはまだわずかに不自然です。 このチュートリアルでは、ココロとONNXを使用したTTS実装であるKokoro-Onnxを使用します。アメリカの英語と英語の英語の音声合成のみをサポートするバージョン0.19(安定したバージョン)を使用します。

タイトルに示されているように、コードはGoogle Colabで実行されます。

kokoro-onnx

をインストールします

パッケージをロードします

例音声合成をテストする前に、公式の例を実行しましょう。次のコードを実行して、数秒以内にオーディオを生成および再生します。 音声合成
!git lfs install
!git clone https://huggingface.co/hexgrad/Kokoro-82M
%cd Kokoro-82M
!apt-get -qq -y install espeak-ng > /dev/null 2>&1
!pip install -q phonemizer torch transformers scipy munch
!pip install -U kokoro-onnx

さあ、テーマとテスト音声の合成を入力しましょう。

音声パックを定義します
import numpy as np
from scipy.io.wavfile import write
from IPython.display import display, Audio
from models import build_model
import torch
from models import build_model
from kokoro import generate

af:アメリカ英語の女性の声

am:アメリカの英語の男性の声

device = 'cuda' if torch.cuda.is_available() else 'cpu'
MODEL = build_model('kokoro-v0_19.pth', device)
VOICE_NAME = [
    'af', # 默认语音是 Bella 和 Sarah 的 50-50 混合
    'af_bella', 'af_sarah', 'am_adam', 'am_michael',
    'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',
    'af_nicole', 'af_sky',
][0]
VOICEPACK = torch.load(f'voices/{VOICE_NAME}.pt', weights_only=True).to(device)
print(f'Loaded voice: {VOICE_NAME}')

text = "How could I know? It's an unanswerable question. Like asking an unborn child if they'll lead a good life. They haven't even been born."
audio, out_ps = generate(MODEL, text, VOICEPACK, lang=VOICE_NAME[0])

display(Audio(data=audio, rate=24000, autoplay=True))
print(out_ps)
bf:イギリスの英語の女性の声

bm:英国の英語の男性の声

利用可能なすべての音声パッケージをロードします。

事前に決められた音声を使用してテキストを生成する 合成音声の違いを確認するために、異なる音声パッケージを使用してオーディオを生成しましょう。同じ例のテキストを使用しますが、

変数を変更して、必要な音声パックを使用できます。
  • 音声合成:混合音声
  • 最初に、2つの英国の女性の声(BF)と組み合わされた平均的な声を作成しましょう。
  • 次に、2つの女性の声と男性の声の組み合わせを組み合わせましょう。
最後に、アメリカとイギリスの男性の声のミックスを合成しましょう。
voicepack_af = torch.load(f'voices/af.pt', weights_only=True).to(device)
voicepack_af_bella = torch.load(f'voices/af_bella.pt', weights_only=True).to(device)
voicepack_af_nicole = torch.load(f'voices/af_nicole.pt', weights_only=True).to(device)
voicepack_af_sarah = torch.load(f'voices/af_sarah.pt', weights_only=True).to(device)
voicepack_af_sky = torch.load(f'voices/af_sky.pt', weights_only=True).to(device)
voicepack_am_adam = torch.load(f'voices/am_adam.pt', weights_only=True).to(device)
voicepack_am_michael = torch.load(f'voices/am_michael.pt', weights_only=True).to(device)
voicepack_bf_emma = torch.load(f'voices/bf_emma.pt', weights_only=True).to(device)
voicepack_bf_isabella = torch.load(f'voices/bf_isabella.pt', weights_only=True).to(device)
voicepack_bm_george = torch.load(f'voices/bm_george.pt', weights_only=True).to(device)
voicepack_bm_lewis = torch.load(f'voices/bm_lewis.pt', weights_only=True).to(device)

また、グレーディオを使用してハイブリッド音声の効果をテストしました:(ここでグラデーションデモンストレーションのリンクまたはスクリーンショットに挿入する必要があります) この組み合わせとオラマの組み合わせは、いくつかの興味深い実験を生成する可能性があります。

この復活した出力は、エリックの音声パックを改善しながら、「ここに抱きしめる顔を挿入する必要がある」と忘れずに要約されています。グレードデモンストレーションのリンクまたはスクリーンショットに挿入する必要があります)」

以上がT4 を使用した Google Colab での Kokoro TTS 音声合成の探索の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は?LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は?Apr 01, 2025 pm 05:09 PM

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

HTMLを解析するために美しいスープを使用するにはどうすればよいですか?HTMLを解析するために美しいスープを使用するにはどうすればよいですか?Mar 10, 2025 pm 06:54 PM

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

Pythonの数学モジュール:統計Pythonの数学モジュール:統計Mar 09, 2025 am 11:40 AM

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

TensorflowまたはPytorchで深い学習を実行する方法は?TensorflowまたはPytorchで深い学習を実行する方法は?Mar 10, 2025 pm 06:52 PM

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

人気のあるPythonライブラリとその用途は何ですか?人気のあるPythonライブラリとその用途は何ですか?Mar 21, 2025 pm 06:46 PM

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

Pythonでコマンドラインインターフェイス(CLI)を作成する方法は?Pythonでコマンドラインインターフェイス(CLI)を作成する方法は?Mar 10, 2025 pm 06:48 PM

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。

あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は?あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は?Apr 01, 2025 pm 11:15 PM

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

Pythonの仮想環境の目的を説明してください。Pythonの仮想環境の目的を説明してください。Mar 19, 2025 pm 02:27 PM

この記事では、Pythonにおける仮想環境の役割について説明し、プロジェクトの依存関係の管理と競合の回避に焦点を当てています。プロジェクト管理の改善と依存関係の問題を減らすための作成、アクティベーション、およびメリットを詳しく説明しています。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。