乱数生成の不一致: 同一の Random.Next
出力
この記事では、Random.Next()
を使用するクラスの複数のインスタンスが同じ乱数のシーケンスを生成するという C# の一般的な問題に対処します。 この一見矛盾した動作は、複数の Random
オブジェクトが連続してインスタンス化されるときに発生します。
根本的な原因は、Random
クラスのデフォルトのシードメカニズムです。 システムクロックをシードとして使用します。 非常に短い時間枠内に複数の Random
オブジェクトが作成された場合、それらはほぼ同一のシード値を受け取り、同一の「乱数」シーケンスが生成されます。
解決策は簡単です。インスタンスごとに新しい Random
オブジェクトを作成する代わりに、単一の Random
オブジェクトを作成し、それをすべてのインスタンスで再利用します。 この単一のインスタンスは、一意の乱数シーケンスを生成し、同一の出力の問題を解決します。 この共有 Random
オブジェクトをパラメータとしてクラスのコンストラクターに渡します。
以上がなぜランダム.nextは、異なるインスタンスの同一の値を返すのですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Cの多型をマスターすると、コードの柔軟性と保守性が大幅に向上する可能性があります。 1)多型により、異なるタイプのオブジェクトを同じベースタイプのオブジェクトとして扱うことができます。 2)継承および仮想関数を通じてランタイム多型を実装します。 3)多型は、既存のクラスを変更せずにコード拡張をサポートします。 4)CRTPを使用してコンパイル時間の多型を実装すると、パフォーマンスが向上する可能性があります。 5)スマートポインターはリソース管理に役立ちます。 6)ベースクラスには仮想デストラクタが必要です。 7)パフォーマンスの最適化には、最初にコード分析が必要です。

c Destructorsprovideprovide -rolovercemanagement、horggarbagecollectorsematememorymanagementbutintroduceunpredictability.c Destructors:1)loving customcleaNupactions whenobjectsostroyed、2)releaseReSourcesimimiontimiallyはdogootsofsopopを放出します

CプロジェクトにXMLを統合することは、次の手順を通じて達成できます。1)PUGIXMLまたはTinyXMLライブラリを使用してXMLファイルを解析および生成すること、2)解析のためのDOMまたはSAXメソッドを選択、3)ネストされたノードとマルチレベルのプロパティを処理する、4)デバッグ技術と最高の慣行を使用してパフォーマンスを最適化します。

XMLは、特に構成ファイル、データストレージ、ネットワーク通信でデータを構成するための便利な方法を提供するため、Cで使用されます。 1)tinyxml、pugixml、rapidxmlなどの適切なライブラリを選択し、プロジェクトのニーズに従って決定します。 2)XML解析と生成の2つの方法を理解する:DOMは頻繁にアクセスと変更に適しており、SAXは大規模なファイルまたはストリーミングデータに適しています。 3)パフォーマンスを最適化する場合、TinyXMLは小さなファイルに適しています。PugixMLはメモリと速度でうまく機能し、RapidXMLは大きなファイルの処理に優れています。

C#とCの主な違いは、メモリ管理、多型の実装、パフォーマンスの最適化です。 1)C#はゴミコレクターを使用してメモリを自動的に管理し、Cは手動で管理する必要があります。 2)C#は、インターフェイスと仮想方法を介して多型を実現し、Cは仮想関数と純粋な仮想関数を使用します。 3)C#のパフォーマンスの最適化は、構造と並列プログラミングに依存しますが、Cはインライン関数とマルチスレッドを通じて実装されます。

DOMおよびSAXメソッドを使用して、CのXMLデータを解析できます。1)DOMのXMLをメモリに解析することは、小さなファイルに適していますが、多くのメモリを占有する可能性があります。 2)サックス解析はイベント駆動型であり、大きなファイルに適していますが、ランダムにアクセスすることはできません。適切な方法を選択してコードを最適化すると、効率が向上する可能性があります。

Cは、高性能と柔軟性のため、ゲーム開発、組み込みシステム、金融取引、科学的コンピューティングの分野で広く使用されています。 1)ゲーム開発では、Cは効率的なグラフィックレンダリングとリアルタイムコンピューティングに使用されます。 2)組み込みシステムでは、Cのメモリ管理とハードウェア制御機能が最初の選択肢になります。 3)金融取引の分野では、Cの高性能はリアルタイムコンピューティングのニーズを満たしています。 4)科学的コンピューティングでは、Cの効率的なアルゴリズムの実装とデータ処理機能が完全に反映されています。

Cは死んでいませんが、多くの重要な領域で栄えています。1)ゲーム開発、2)システムプログラミング、3)高性能コンピューティング、4)ブラウザとネットワークアプリケーション、Cは依然として主流の選択であり、その強力な活力とアプリケーションのシナリオを示しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。
