検索
ホームページバックエンド開発Python チュートリアルデータ オーケストレーション ツール分析: Airflow、Dagster、Flyte

データ オーケストレーション 対決: Apache Airflow、Dagster、Flyte

最新のデータ ワークフローでは、堅牢なオーケストレーションが必要です。 Apache Airflow、Dagster、Flyte は人気のある選択肢であり、それぞれに明確な長所と哲学があります。この比較は、気象データ パイプラインの実世界の経験に基づいて行われており、適切なツールを選択するのに役立ちます。

プロジェクト概要

この分析は、気象データ パイプライン プロジェクトで Airflow、Dagster、Flyte を使用した実践的な経験に基づいています。 目的は、それらの機能を比較し、独自のセールス ポイントを特定することでした。

Apache エアフロー

2014 年に Airbnb で誕生した Airflow は、使いやすい Web インターフェイスを備えた成熟した Python ベースのオーケストレーターです。 2019 年にトップレベルの Apache プロジェクトに移行し、その地位は確固たるものになりました。 Airflow は複雑なタスクの自動化に優れており、確実に順次実行されます。 気象プロジェクトでは、データの取得、処理、保存を完璧に管理しました。

エアフロー DAG の例:

# Dag Instance
@dag(
    dag_id="weather_dag",
    schedule_interval="0 0 * * *",  # Daily at midnight
    start_date=datetime.datetime(2025, 1, 19, tzinfo=IST),
    catchup=False,
    dagrun_timeout=datetime.timedelta(hours=24),
)
# Task Definitions
def weather_dag():
    @task()
    def create_tables():         
        create_table()  

    @task()
    def fetch_weather(city: str, date: str):         
        fetch_and_store_weather(city, date)  

    @task()
    def fetch_daily_weather(city: str):     
        fetch_day_average(city.title())  

    @task()
    def global_average(city: str):     
        fetch_global_average(city.title())  

# Task Dependencies
    create_task = create_tables()
    fetch_weather_task = fetch_weather("Alwar", "2025-01-19")
    fetch_daily_weather_task = fetch_daily_weather("Alwar")
    global_average_task = global_average("Alwar")
# Task Order
    create_task >> fetch_weather_task >> fetch_daily_weather_task >> global_average_task

weather_dag_instance = weather_dag()

Airflow の UI は、包括的な監視と追跡を提供します。

Data Orchestration Tool Analysis: Airflow, Dagster, Flyte

ダグスター

2019 年に Elementl によって開始された Dagster は、新しい資産中心のプログラミング モデルを提供します。 タスク中心のアプローチとは異なり、Dagster は計算の中核単位としてデータ資産 (データセット) 間の関係を優先します。

Dagster アセットの例:

@asset(
        description='Table Creation for the Weather Data',
        metadata={
            'description': 'Creates databse tables needed for weather data.',
            'created_at': datetime.datetime.now().isoformat()
        }
)
def setup_database() -> None:
    create_table()

# ... (other assets defined similarly)

Dagster の資産中心の設計により、透明性が促進され、デバッグが簡素化されます。 組み込みのバージョニングと資産スナップショットは、進化するパイプラインの管理の課題に対処します。 Dagster は、@ops.

を使用した従来のタスクベースのアプローチもサポートしています。

Data Orchestration Tool Analysis: Airflow, Dagster, Flyte

Data Orchestration Tool Analysis: Airflow, Dagster, Flyte

フライト

Lyft によって開発され、2020 年にオープンソース化された Flyte は、機械学習とデータ エンジニアリングの両方のために設計された Kubernetes ネイティブのワークフロー オーケストレーターです。コンテナ化されたアーキテクチャにより、効率的なスケーリングとリソース管理が可能になります。 Flyte は、Airflow のタスク中心のアプローチと同様に、タスク定義に Python 関数を使用します。

Flyte ワークフローの例:

@task()
def setup_database():  
    create_table()

# ... (other tasks defined similarly)

@workflow         #defining the workflow
def wf(city: str='Noida', date: str='2025-01-17') -> typing.Tuple[str, int]:
    # ... (task calls)

Flyte の flytectl は、ローカルでの実行とテストを簡素化します。

比較

Feature Airflow Dagster Flyte
DAG Versioning Manual, challenging Built-in, asset-centric Built-in, versioned workflows
Scaling Can be challenging Excellent for large data Excellent, Kubernetes-native
ML Workflow Support Limited Good Excellent
Asset Management Task-focused Asset-centric, superior Task-focused

結論

最適な選択は、特定のニーズによって異なります。 Dagster は資産管理とバージョン管理に優れており、Flyte はスケーリングと ML ワークフローのサポートに優れています。 Airflow は、よりシンプルな従来のデータ パイプラインにとって堅実なオプションであり続けます。 プロジェクトの規模、焦点、将来の要件を慎重に評価して、最善の決定を下してください。

以上がデータ オーケストレーション ツール分析: Airflow、Dagster、Flyteの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonのハイブリッドアプローチ:コンピレーションと解釈を組み合わせたPythonのハイブリッドアプローチ:コンピレーションと解釈を組み合わせたMay 08, 2025 am 12:16 AM

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)

Pythonの「for」と「while」ループの違いを学びますPythonの「for」と「while」ループの違いを学びますMay 08, 2025 am 12:11 AM

keydifferencesは、「for」と「while "loopsare:1)" for "for" loopsareideal forterating overencesonownowiterations、while2) "for" for "for" for "for" for "for" for "for" for for for for "wide" loopsarebetterunuinguntinunuinguntinisisisisisisisisisisisisisisisisisisisisisisisisisisisations.un

重複したPython Concatenateリスト重複したPython ConcatenateリストMay 08, 2025 am 12:09 AM

Pythonでは、さまざまな方法でリストを接続して重複要素を管理できます。1)オペレーターを使用するか、すべての重複要素を保持します。 2)セットに変換してから、リストに戻ってすべての重複要素を削除しますが、元の順序は失われます。 3)ループを使用するか、包含をリストしてセットを組み合わせて重複要素を削除し、元の順序を維持します。

Pythonリスト連結パフォーマンス:速度比較Pythonリスト連結パフォーマンス:速度比較May 08, 2025 am 12:09 AM

fasteStMethodDodforListConcatenationinpythOndontsonistize:1)forsmallLists、operatorisefficient.2)forlargerlists、list.extend()orlistcomlethingisfaster、withextend()beingmorememory-efficient bymodifyigniviselistinistin-place。

Pythonリストに要素をどのように挿入しますか?Pythonリストに要素をどのように挿入しますか?May 08, 2025 am 12:07 AM

to insertelementsIntopeaseThonList、useappend()toaddtotheend、insert()foraspificposition、andextend()formultipleElements.1)useappend()foraddingsingleitemstotheend.2)useintert()toaddataspecificindex、cont'slowerforforgelists.3)

Pythonリストは、フードの下に動的な配列またはリンクリストですか?Pythonリストは、フードの下に動的な配列またはリンクリストですか?May 07, 2025 am 12:16 AM

PythonListsareimplementedasdynamicarrays、notlinkedlists.1)they restorediguourmemoryblocks、それはパフォーマンスに影響を与えることに影響を与えます

Pythonリストから要素をどのように削除しますか?Pythonリストから要素をどのように削除しますか?May 07, 2025 am 12:15 AM

pythonoffersfourmainmethodstoremoveelements fromalist:1)removesthefirstoccurrenceofavalue、2)pop(index(index(index)removes regvess returnsaspecifiedindex、3)delstatementremoveselementselementsbyindexorseLice、および4)clear()

スクリプトを実行しようとするときに「許可を拒否された」エラーを取得した場合、何を確認する必要がありますか?スクリプトを実行しようとするときに「許可を拒否された」エラーを取得した場合、何を確認する必要がありますか?May 07, 2025 am 12:12 AM

toresolvea "許可denided" errors whenrunningascript、sofflowthesesteps:1)checkandadaddadaddadadaddaddadadadaddadaddadaddadaddaddaddaddaddadaddadaddaddaddaddadaddaddaddadadaddadaddadaddadadisionsisingmod xmyscript.shtomakeitexexutable.2)

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター