PySpark 入門ガイド: ローカル環境での構成と使用が簡単
PySpark は、高速かつスケーラブルなデータ処理を可能にするオープンソースの分散コンピューティング システムである Apache Spark の Python API です。 PySpark を使用すると、Python 開発者は、Java や Scala の複雑さを深く掘り下げることなく、ビッグ データ分析、機械学習、データ エンジニアリング タスクに Spark の力を活用できます。
PySpark を使用すると、ユーザーは大規模なデータセットを処理し、分散データ変換を実行し、クラスター内で機械学習アルゴリズムを実行できます。 Hadoop などの一般的なデータ処理フレームワークとシームレスに統合され、複数のデータ形式をサポートするため、データ サイエンスと分析の分野で多用途のツールになります。
このガイドでは、ローカル コンピューター環境で PySpark を簡単にセットアップして使用できるように、PySpark 構成の概要を説明します。
インストール
- Python をインストールします: https://www.php.cn/link/70fa3e3aed5e5da45f0114c00fadfb41
- Java のインストール: まず、最新バージョンの Java をダウンロードしてください: https://www.php.cn/link/8513351ff7f10b0f156c9d1f669e1210 (この記事では Java 23 を使用します)
- PySpark をインストールします:
まず、Apache Spark を次からダウンロードする必要があります:
この記事では、チュートリアルの例として https://www.php.cn/link/8f7b2d9100577f77aa8fbb4f51c0366e を使用します。
Python 構成
- Java 構成:
import os os.environ["JAVA_HOME"] = fr"D:\Soft\JAVA\jdk-23.0.1" os.environ["PATH"] = os.environ["JAVA_HOME"] + "/bin;" + os.environ["PATH"]
- PySpark 構成:
import os os.environ["SPARK_HOME"] = fr"D:\Soft\pyspark\spark-3.5.4-bin-hadoop3" os.environ["PATH"] = os.environ["SPARK_HOME"] + "/bin;" + os.environ["PATH"]
構成が完了したら、コマンドラインで PySpark を確認してみてください:
PySpark ノートブックの例
import numpy as np import pandas as pd from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("调试示例") \ .master("local[*]") \ .config("spark.eventLog.enabled", "true") \ .config("spark.sql.shuffle.partitions", "1") \ .getOrCreate() spark.sparkContext.setLogLevel("DEBUG") # 启用基于Arrow的列式数据传输 spark.conf.set("spark.sql.execution.arrow.enabled", "true") # 生成pandas DataFrame pdf = pd.DataFrame(np.random.rand(100, 3)) # 使用Arrow从pandas DataFrame创建Spark DataFrame df = spark.createDataFrame(pdf) # 重命名列 df = df.toDF("a", "b", "c") df.show(5) # 使用df.show(5)查看PySpark测试输出
機械学習データの例:
import requests from pyspark.sql import SparkSession # 数据集URL url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" # 下载数据集并保存到本地 response = requests.get(url) with open("iris.data", "wb") as file: file.write(response.content) # 创建SparkSession spark = SparkSession.builder \ .appName("鸢尾花数据分析") \ .master("local[*]") \ .getOrCreate() # 本地下载的鸢尾花数据集路径 iris_data_path = "iris.data" # 定义数据的模式 columns = ["sepal_length", "sepal_width", "petal_length", "petal_width", "species"] # 将数据加载到DataFrame中 df = spark.read.csv(iris_data_path, header=False, inferSchema=True) # 设置列名 df = df.toDF(*columns) # 显示DataFrame的前几行 df.show() # 完成后停止SparkSession spark.stop()
正常に実行されました!
参考
- https://www.php.cn/link/06c765902df5e6af92864147e1995fa3
- https://www.php.cn/link/70fa3e3aed5e5da45f0114c00fadfb41
- https://www.php.cn/link/6dc4a31db60d3da6b1d477315619952e
- https://www.php.cn/link/8513351ff7f10b0f156c9d1f669e1210
- https://www.php.cn/link/73eb26ad4e0c9d3f4a7bdede7856b79a
以上がPySpark ローカル Python Windows ノートブックを実行するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

pythonusesahybridmodelofcompilation andtertation:1)thepythoninterpretercompilessourcodeodeplatform-indopent bytecode.2)thepythonvirtualmachine(pvm)thenexecuteTesthisbytecode、balancingeaseoputhswithporformance。

pythonisbothintersedand compiled.1)it'scompiledtobytecode forportabalityacrossplatforms.2)bytecodeisthenは解釈され、開発を許可します。

loopsareideal whenyouwhenyouknumberofiterationsinadvance、foreleloopsarebetterforsituationsは、loopsaremoreedilaConditionismetを使用します

henthenumber ofiterationsisknown advanceの場合、dopendonacondition.1)forloopsareideal foriterating over for -for -for -saredaverseversives likelistorarrays.2)whileopsaresupasiable forsaresutable forscenarioswheretheloopcontinupcontinuspificcond

pythonisnotpurelyLepted; itusesahybridapproachofbytecodecodecodecodecodecodedruntimerttation.1)pythoncompilessourcodeintobytecode、whodythepythonvirtualmachine(pvm).2)

ToconcatenateListsinpythothesheElements、使用:1)Operatortokeepduplicates、2)asettoremoveduplicates、or3)listcomplunting for controloverduplicates、各メトドハスディフェルフェルフェントパフォーマンスアンドソーダーインプリテーション。

pythonisantertedlanguage、useaseofuseandflexibility-butfactingporformantationationsincriticalapplications.1)解釈されたlikepythonexecuteline-by-lineを解釈します

Useforloopswhenthenumberofiterationsisknowninadvance、andwhiloopswheniterationsdependonacondition.1)forloopsareidealforsecenceslikelistoranges.2)


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

Dreamweaver Mac版
ビジュアル Web 開発ツール

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

SublimeText3 中国語版
中国語版、とても使いやすい

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!
