コーヒー買ってきて☕
*メモ:
- 私の投稿では OxfordIIITPet() について説明しています。
CenterCrop() は、以下に示すように、0 個以上の画像を中心にトリミングできます。
*メモ:
- 初期化の最初の引数は size(Required-Type:int, float または tuple/list(int または float) または size()) です。
*メモ:
- [高さ、幅]です。
- 0
- タプル/リストは 1 つまたは 2 つの要素を持つ 1D でなければなりません。
- 単一の値 (int、float または tuple/list(int または float) は [サイズ、サイズ] を意味します。
- 最初の引数は img(Required-Type:PIL Image or tensor(int, float, complex or bool)) です。
*メモ:
- テンソルは、0 個以上の要素の 2D 以上の D でなければなりません。
- img=. は使用しないでください。
- V1 または V2 に従って v2 を使用することをお勧めしますか?どれを使えばいいのでしょうか?
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import CenterCrop centercrop = CenterCrop(size=100) centercrop # CenterCrop(size=(100, 100)) centercrop.size # (100, 100) origin_data = OxfordIIITPet( root="data", transform=None ) p600_data = OxfordIIITPet( root="data", transform=CenterCrop(size=600) # transform=CenterCrop(size=[600]) # transform=CenterCrop(size=[600, 600]) ) p400_data = OxfordIIITPet( root="data", transform=CenterCrop(size=400) ) p200_data = OxfordIIITPet( root="data", transform=CenterCrop(size=200) ) p100_data = OxfordIIITPet( root="data", transform=CenterCrop(size=100) ) p50_data = OxfordIIITPet( root="data", transform=CenterCrop(size=50) ) p10_data = OxfordIIITPet( root="data", transform=CenterCrop(size=10) ) p200p300_data = OxfordIIITPet( root="data", transform=CenterCrop(size=[200, 300]) ) p300p200_data = OxfordIIITPet( root="data", transform=CenterCrop(size=[300, 200]) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") show_images1(data=p600_data, main_title="p600_data") show_images1(data=p400_data, main_title="p400_data") show_images1(data=p200_data, main_title="p200_data") show_images1(data=p100_data, main_title="p100_data") show_images1(data=p50_data, main_title="p50_data") show_images1(data=p10_data, main_title="p10_data") print() show_images1(data=p200p300_data, main_title="p200p300_data") show_images1(data=p300p200_data, main_title="p300p200_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) if not s: s = [im.size[1], im.size[0]] cc = CenterCrop(size=s) # Here plt.imshow(X=cc(im)) # Here plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") show_images2(data=origin_data, main_title="p600_data", s=600) show_images2(data=origin_data, main_title="p400_data", s=400) show_images2(data=origin_data, main_title="p200_data", s=200) show_images2(data=origin_data, main_title="p100_data", s=100) show_images2(data=origin_data, main_title="p50_data", s=50) show_images2(data=origin_data, main_title="p10_data", s=10) print() show_images2(data=origin_data, main_title="origin_data") show_images2(data=origin_data, main_title="p200p300_data", s=[200, 300]) show_images2(data=origin_data, main_title="p300p200_data", s=[300, 200])
以上がPyTorch の CenterCropの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

Dreamweaver Mac版
ビジュアル Web 開発ツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター
