検索
ホームページウェブフロントエンドjsチュートリアルPrisma と Next.js を使用した API 呼び出し傾向の分析: 週、月、または年ごとのグループ化

Analyzing API Call Trends with Prisma and Next.js: Grouping by Week, Month, or Year

このブログ投稿では、Prisma を使用してデータを日、月、または年ごとにグループ化するための実用的なソリューションを提供します。 私自身もこれに苦労したので、この合理化されたアプローチを共有します。 Next.js API エンドポイントを使用して、Prisma と MongoDB を使用して API 呼び出しの傾向を分析し、長期にわたる成功率と呼び出し頻度に焦点を当てます。

簡略化された API 呼び出しデータ構造

効果的なダッシュボードには、API 呼び出しを時間間隔ごとにグループ化する必要があります。 簡潔な Prisma スキーマを使用してみましょう:

<code>model ApiCall {
  id        String    @id @default(auto()) @map("_id") @db.ObjectId
  timestamp DateTime  @default(now())
  status    ApiCallStatus // Enum for success or failure.
}

enum ApiCallStatus {
  SUCCESS
  FAILURE
}</code>

このスキーマは、傾向分析に十分な、各 API 呼び出しのタイムスタンプとステータスを追跡します。

API 呼び出しトレンドのクエリ: Next.js API エンドポイント

この Next.js API エンドポイントは、API 呼び出しデータを集計し、指定された期間 (年、月、または日) ごとにグループ化します。

<code>import { NextRequest, NextResponse } from 'next/server';
import { startOfYear, endOfYear, startOfMonth, endOfMonth } from 'date-fns';

export async function GET(req: NextRequest) {
    const range = req.nextUrl.searchParams.get("range"); // 'year' or 'month'
    const groupBy = req.nextUrl.searchParams.get("groupby"); // 'yearly', 'monthly', 'daily'

    // Input validation
    if (!range || (range !== 'year' && range !== 'month')) {
        return NextResponse.json({ error: "Range must be 'year' or 'month'" }, { status: 400 });
    }

    if (!groupBy || (groupBy !== 'yearly' && groupBy !== 'monthly' && groupBy !== 'daily')) {
        return NextResponse.json({ error: "Group by must be 'yearly', 'monthly', or 'daily'" }, { status: 400 });
    }

    try {
        let start: Date, end: Date;
        if (range === 'year') {
            start = startOfYear(new Date());
            end = endOfYear(new Date());
        } else { // range === 'month'
            start = startOfMonth(new Date());
            end = endOfMonth(new Date());
        }

        let groupByFormat: string;
        switch (groupBy) {
            case 'yearly':
                groupByFormat = "%Y";
                break;
            case 'monthly':
                groupByFormat = "%Y-%m";
                break;
            case 'daily':
                groupByFormat = "%Y-%m-%d";
                break;
        }

        const apiCallTrends = await db.apiCall.aggregateRaw({
            pipeline: [
                {
                    $match: {
                        timestamp: { $gte: { $date: start }, $lte: { $date: end } }
                    }
                },
                {
                    $group: {
                        _id: { $dateToString: { format: groupByFormat, date: '$timestamp' } },
                        SUCCESS: { $sum: { $cond: [{ $eq: ['$status', 'SUCCESS'] }, 1, 0] } },
                        FAILURE: { $sum: { $cond: [{ $eq: ['$status', 'FAILURE'] }, 1, 0] } },
                        TOTAL: { $sum: 1 }
                    }
                },
                {
                    $sort: {
                        _id: 1
                    }
                }
            ]
        });

        return NextResponse.json({ apiCallTrends });
    } catch (error) {
        console.error(error);
        return NextResponse.json({ error: "An error occurred while fetching data." }, { status: 500 });
    }
}</code>

応答例

次のようなリクエスト:

<code>GET /api/your-endpoint?range=year&groupby=monthly</code>

次の応答が返される可能性があります:

<code>{
  "apiCallTrends": [
    {
      "_id": "2025-01", // January 2025
      "SUCCESS": 120,
      "FAILURE": 15,
      "TOTAL": 135
    },
    {
      "_id": "2025-02", // February 2025
      "SUCCESS": 110,
      "FAILURE": 10,
      "TOTAL": 120
    },
    {
      "_id": "2025-03", // March 2025
      "SUCCESS": 130,
      "FAILURE": 20,
      "TOTAL": 150
    }
    // ... more monthly data
  ]
}</code>

主な機能

  • 柔軟な時間グループ化: 年、月、または日ごとに簡単にグループ化できます。
  • 包括的な傾向分析: 各期間の成功/失敗の数と合計を提供します。
  • 堅牢なエラー処理: 明確なエラー応答が含まれます。
  • 最適化されたパフォーマンス: MongoDB の集約パイプラインを活用して効率を高めます。

結論

このアプローチは、Prisma ORM を使用して、MongoDB 内のさまざまな時間範囲ごとにグループ化されたタイムスタンプ付きデータをクエリおよび分析するための堅牢かつ効率的な方法を提供します。 読んでいただきありがとうございます! さらに多くのコンテンツをご覧になるには、「いいね!」を押して購読してください。 GitHub や LinkedIn で私とつながりましょう。

以上がPrisma と Next.js を使用した API 呼び出し傾向の分析: 週、月、または年ごとのグループ化の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python vs. JavaScript:開発環境とツールPython vs. JavaScript:開発環境とツールApr 26, 2025 am 12:09 AM

開発環境におけるPythonとJavaScriptの両方の選択が重要です。 1)Pythonの開発環境には、Pycharm、Jupyternotebook、Anacondaが含まれます。これらは、データサイエンスと迅速なプロトタイピングに適しています。 2)JavaScriptの開発環境には、フロントエンドおよびバックエンド開発に適したnode.js、vscode、およびwebpackが含まれます。プロジェクトのニーズに応じて適切なツールを選択すると、開発効率とプロジェクトの成功率が向上する可能性があります。

JavaScriptはCで書かれていますか?証拠を調べるJavaScriptはCで書かれていますか?証拠を調べるApr 25, 2025 am 12:15 AM

はい、JavaScriptのエンジンコアはCで記述されています。1)C言語は、JavaScriptエンジンの開発に適した効率的なパフォーマンスと基礎となる制御を提供します。 2)V8エンジンを例にとると、そのコアはCで記述され、Cの効率とオブジェクト指向の特性を組み合わせて書かれています。3)JavaScriptエンジンの作業原理には、解析、コンパイル、実行が含まれ、C言語はこれらのプロセスで重要な役割を果たします。

JavaScriptの役割:WebをインタラクティブでダイナミックにするJavaScriptの役割:WebをインタラクティブでダイナミックにするApr 24, 2025 am 12:12 AM

JavaScriptは、Webページのインタラクティブ性とダイナミズムを向上させるため、現代のWebサイトの中心にあります。 1)ページを更新せずにコンテンツを変更できます。2)Domapiを介してWebページを操作する、3)アニメーションやドラッグアンドドロップなどの複雑なインタラクティブ効果、4)ユーザーエクスペリエンスを改善するためのパフォーマンスとベストプラクティスを最適化します。

CおよびJavaScript:接続が説明しましたCおよびJavaScript:接続が説明しましたApr 23, 2025 am 12:07 AM

CおよびJavaScriptは、WebAssemblyを介して相互運用性を実現します。 1)CコードはWebAssemblyモジュールにコンパイルされ、JavaScript環境に導入され、コンピューティングパワーが強化されます。 2)ゲーム開発では、Cは物理エンジンとグラフィックスレンダリングを処理し、JavaScriptはゲームロジックとユーザーインターフェイスを担当します。

Webサイトからアプリまで:JavaScriptの多様なアプリケーションWebサイトからアプリまで:JavaScriptの多様なアプリケーションApr 22, 2025 am 12:02 AM

JavaScriptは、Webサイト、モバイルアプリケーション、デスクトップアプリケーション、サーバー側のプログラミングで広く使用されています。 1)Webサイト開発では、JavaScriptはHTMLおよびCSSと一緒にDOMを運用して、JQueryやReactなどのフレームワークをサポートします。 2)ReactNativeおよびIonicを通じて、JavaScriptはクロスプラットフォームモバイルアプリケーションを開発するために使用されます。 3)電子フレームワークにより、JavaScriptはデスクトップアプリケーションを構築できます。 4)node.jsを使用すると、JavaScriptがサーバー側で実行され、高い並行リクエストをサポートします。

Python vs. JavaScript:ユースケースとアプリケーションと比較されますPython vs. JavaScript:ユースケースとアプリケーションと比較されますApr 21, 2025 am 12:01 AM

Pythonはデータサイエンスと自動化により適していますが、JavaScriptはフロントエンドとフルスタックの開発により適しています。 1. Pythonは、データ処理とモデリングのためにNumpyやPandasなどのライブラリを使用して、データサイエンスと機械学習でうまく機能します。 2。Pythonは、自動化とスクリプトにおいて簡潔で効率的です。 3. JavaScriptはフロントエンド開発に不可欠であり、動的なWebページと単一ページアプリケーションの構築に使用されます。 4. JavaScriptは、node.jsを通じてバックエンド開発において役割を果たし、フルスタック開発をサポートします。

JavaScript通訳者とコンパイラにおけるC/Cの役割JavaScript通訳者とコンパイラにおけるC/Cの役割Apr 20, 2025 am 12:01 AM

CとCは、主に通訳者とJITコンパイラを実装するために使用されるJavaScriptエンジンで重要な役割を果たします。 1)cは、JavaScriptソースコードを解析し、抽象的な構文ツリーを生成するために使用されます。 2)Cは、Bytecodeの生成と実行を担当します。 3)Cは、JITコンパイラを実装し、実行時にホットスポットコードを最適化およびコンパイルし、JavaScriptの実行効率を大幅に改善します。

JavaScript in Action:実際の例とプロジェクトJavaScript in Action:実際の例とプロジェクトApr 19, 2025 am 12:13 AM

現実世界でのJavaScriptのアプリケーションには、フロントエンドとバックエンドの開発が含まれます。 1)DOM操作とイベント処理を含むTODOリストアプリケーションを構築して、フロントエンドアプリケーションを表示します。 2)node.jsを介してRestfulapiを構築し、バックエンドアプリケーションをデモンストレーションします。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール