検索

Getting Started with Python for Machine Learning

機械学習 (ML) における Python の人気は、その使いやすさ、柔軟性、および広範なライブラリ サポートに由来しています。このガイドでは、ML に Python を使用するための基礎的な概要を提供し、重要なライブラリをカバーし、簡単なモデルの構築を示します。


機械学習に Python を選ぶ理由

ML 分野における Python の優位性は、いくつかの重要な利点によるものです。

  • 初心者向け: 直感的な構文により、初心者でもアクセスしやすくなっています。
  • 豊富なライブラリ: 豊富なライブラリにより、データ操作、視覚化、モデル構築が簡素化されます。
  • 強力なコミュニティ サポート: 大規模で活発なコミュニティにより、すぐに利用できるリソースと支援が保証されます。

Python は、データ分析からモデルのデプロイメントまで、ML プロセスのあらゆる段階に対応する包括的なツールを提供します。


機械学習に必須の Python ライブラリ

ML の取り組みを開始する前に、次の重要な Python ライブラリについてよく理解してください。

NumPy: Python の数値計算の基礎。 配列、行列、数学関数のサポートを提供します。

  • アプリケーション: 基本的な数値演算、線形代数、配列操作に不可欠です。

Pandas: データの操作と分析のための強力なライブラリです。 その DataFrame 構造により、構造化データの操作が簡素化されます。

  • アプリケーション: データセットのロード、クリーニング、探索に最適です。

Scikit-learn: Python で最も広く使用されている ML ライブラリ。 分類、回帰、クラスタリングのアルゴリズムを含む、データ マイニングと分析のための効率的なツールを提供します。

  • アプリケーション: ML モデルの構築と評価。

開発環境のセットアップ

pip を使用して必要なライブラリをインストールします。

pip install numpy pandas scikit-learn

インストールしたら、コーディングを開始する準備が整います。


実践的な機械学習ワークフロー

花びらの測定に基づいてアヤメの種を分類するアヤメ データセットを使用して、基本的な ML モデルを構築しましょう。

ステップ 1: ライブラリをインポートする

必要なライブラリをインポートします:

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

ステップ 2: データセットをロードする

Scikit-learn を使用して Iris データセットを読み込みます:

# Load the Iris dataset
iris = load_iris()

# Convert to a Pandas DataFrame
data = pd.DataFrame(iris.data, columns=iris.feature_names)
data['species'] = iris.target

ステップ 3: データ探索

データを分析します:

# Display initial rows
print(data.head())

# Check for missing values
print(data.isnull().sum())

# Summary statistics
print(data.describe())

ステップ 4: データの準備

特徴 (X) とラベル (y) を分離し、データをトレーニング セットとテスト セットに分割します。

# Features (X) and labels (y)
X = data.drop('species', axis=1)
y = data['species']

# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

ステップ 5: モデルのトレーニング

ランダムフォレスト分類器をトレーニングする:

pip install numpy pandas scikit-learn

ステップ 6: 予測と評価

予測を行い、モデルの精度を評価します:

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

おめでとうございます!最初の ML モデルが作成されました。 学習をさらに進めるには:

  • Kaggle または UCI Machine Learning Repository からデータセットを探索します。
  • 他のアルゴリズム (線形回帰、デシジョン ツリー、サポート ベクター マシン) を実験します。
  • データの前処理手法 (スケーリング、エンコード、特徴の選択) を学びます。

さらなる学習リソース

  • Scikit-learn ドキュメント: 公式 Scikit-learn ガイド。
  • Kaggle Learn: 初心者向けの実践的な ML チュートリアル。
  • Python Machine Learning by Sebastian Raschka: Python による ML に関するユーザーフレンドリーな本。

以上が機械学習のための Python 入門の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonリストは、フードの下に動的な配列またはリンクリストですか?Pythonリストは、フードの下に動的な配列またはリンクリストですか?May 07, 2025 am 12:16 AM

PythonListsareimplementedasdynamicarrays、notlinkedlists.1)they restorediguourmemoryblocks、それはパフォーマンスに影響を与えることに影響を与えます

Pythonリストから要素をどのように削除しますか?Pythonリストから要素をどのように削除しますか?May 07, 2025 am 12:15 AM

pythonoffersfourmainmethodstoremoveelements fromalist:1)removesthefirstoccurrenceofavalue、2)pop(index(index(index)removes regvess returnsaspecifiedindex、3)delstatementremoveselementselementsbyindexorseLice、および4)clear()

スクリプトを実行しようとするときに「許可を拒否された」エラーを取得した場合、何を確認する必要がありますか?スクリプトを実行しようとするときに「許可を拒否された」エラーを取得した場合、何を確認する必要がありますか?May 07, 2025 am 12:12 AM

toresolvea "許可denided" errors whenrunningascript、sofflowthesesteps:1)checkandadaddadaddadadaddaddadadadaddadaddadaddadaddaddaddaddaddadaddadaddaddaddaddadaddaddaddadadaddadaddadaddadadisionsisingmod xmyscript.shtomakeitexexutable.2)

Arrayは、Pythonでの画像処理でどのように使用されていますか?Arrayは、Pythonでの画像処理でどのように使用されていますか?May 07, 2025 am 12:04 AM

ArraySarecrucialinpythonimageprocessing asheyenable efficientmanipulation analysisofimagedata.1)画像anverttonumpyArrays、with grayscaleimagesasas2darraysandcolorimagesas.

リストよりも大幅に高速な配列の操作はどのような種類ですか?リストよりも大幅に高速な配列の操作はどのような種類ですか?May 07, 2025 am 12:01 AM

有意に発生することは、採用中に採用されていることを確認してください

リストと配列間の要素ごとの操作のパフォーマンスの違いを説明します。リストと配列間の要素ごとの操作のパフォーマンスの違いを説明します。May 06, 2025 am 12:15 AM

ArsareSareBetterElement-WiseOperationsduetof of ActassandoptimizedImplementations.1)ArrayshaveContigUousMoryFordiRectAccess.2)ListSareFlexibleButSlowerDueTopotentialDynamicresizizizizing.3)

numpyアレイ全体で数学操作を効率的に実行するにはどうすればよいですか?numpyアレイ全体で数学操作を効率的に実行するにはどうすればよいですか?May 06, 2025 am 12:15 AM

Numpyの配列全体の数学的操作は、ベクトル化された操作を通じて効率的に実装できます。 1)追加(arr 2)などの簡単な演算子を使用して、配列で操作を実行します。 2)Numpyは、基礎となるC言語ライブラリを使用して、コンピューティング速度を向上させます。 3)乗算、分割、指数などの複雑な操作を実行できます。 4)放送操作に注意して、配列の形状が互換性があることを確認します。 5)np.sum()などのnumpy関数を使用すると、パフォーマンスが大幅に向上する可能性があります。

Pythonアレイに要素を挿入するにはどうすればよいですか?Pythonアレイに要素を挿入するにはどうすればよいですか?May 06, 2025 am 12:14 AM

Pythonでは、要素をリストに挿入するための2つの主要な方法があります。1)挿入(インデックス、値)メソッドを使用して、指定されたインデックスに要素を挿入できますが、大きなリストの先頭に挿入することは非効率的です。 2)Append(Value)メソッドを使用して、リストの最後に要素を追加します。これは非常に効率的です。大規模なリストの場合、append()を使用するか、dequeまたはnumpy配列を使用してパフォーマンスを最適化することを検討することをお勧めします。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。