2D 点セットで穴を見つける
このタスクは、デカルト グリッド システム内の 2D 点セットで穴を見つけることです。点は土壌サンプルの場所を表し、穴には巨大な岩、湿地、湖/池が含まれる可能性があります。目標は、アルゴリズムの感度を調整してポリゴンの粗さまたは滑らかさを制御しながら、これらの領域を大まかに定義する凹状のポリゴンを見つけることです。
ソリューションアプローチ
手順:
- 密度マップの作成: スケーリングによってポイント セットをビットマップまたは 2D 配列に変換しますそして各点をグリッド上に投影します。各セルの密度 (ポイントの数) を計算します。
- 穴の特定: 密度がゼロまたは指定されたしきい値未満のセルを検索します。
- 穴の領域をセグメント化します。 : これらの穴を覆う水平線と垂直線を作成し、近接性によってグループ化して穴を形成します
- 穴セグメントをポリゴン化: セグメントを凹型ポリゴンに変換します。ポイントを並べ替えて、適切な接続を確保し、重複を削除します。
実装例 (C#):
using System; using System.Collections.Generic; public class Holes { // Density map (2D array) private int[][] map; // List of hole segments (lines) private List<line> segments; // Polygonized holes (concave polygons) private List<polygon> holes; // Polygonization tolerance (higher value = smoother polygons) private double tolerance; // Initializes the hole detection algorithm. public Holes(int[][] points, int mapSize, double tolerance) { if (points == null || mapSize (); this.holes = new List<polygon>(); // Create density map CreateDensityMap(points, mapSize); } // Identifies holes in the density map. public void FindHoles() { if (map == null || map.Length == 0) { throw new InvalidOperationException("Density map not initialized."); } // Find hole cells List<cell> holeCells = FindCells(0); // Group hole cells into segments List<list>> lineGroups = GroupLines(holeCells); // Polygonize segments PolygonizeSegments(lineGroups); } // Helper functions for hole detection. private void CreateDensityMap(int[][] points, int mapSize) { // Scale and project points onto a grid for (int i = 0; i FindCells(int threshold) { List<cell> holeCells = new List<cell>(); for (int i = 0; i > GroupLines(List<cell> holeCells) { // Group lines by proximity List<list>> lineGroups = new List<list>>(); foreach (Cell holeCell in holeCells) { List<line> group = null; // Find existing group or create a new one for (int i = 0; i line.Proximity(holeCell) (); lineGroups.Add(group); } // Add horizontal/vertical lines group.Add(new Line(holeCell.x, holeCell.y, true)); group.Add(new Line(holeCell.x, holeCell.y, false)); } return lineGroups; } private void PolygonizeSegments(List<list>> lineGroups) { foreach (List<line> lineGroup in lineGroups) { Polygon polygon = PolygonizeSegment(lineGroup); if (polygon != null) { holes.Add(polygon); } } } private Polygon PolygonizeSegment(List<line> lineSegment) { // Sort lines by angle (convex hull algorithm) lineSegment.Sort((a, b) => a.Angle.CompareTo(b.Angle)); // Remove duplicate lines List<line> uniqueLines = new List<line>(); foreach (Line line in lineSegment) { if (uniqueLines.Count == 0 || uniqueLines[uniqueLines.Count - 1].Angle != line.Angle) { uniqueLines.Add(line); } } // Polygonize lines List<point> points = new List<point>(); for (int i = 0; i Math.PI) { point = currentLine.GetIntersection(uniqueLines[(i + 1) % uniqueLines.Count], true); } else { point = currentLine.GetIntersection(uniqueLines[(i + 1) % uniqueLines.Count], false); } if (point != null) { points.Add(point); } } return new Polygon(points); } // Helper classes for line/polygon representation. private class Line { public int x1, y1, x2, y2; public double angle; public bool isHorizontal; public Line(int x, int y, bool isHorizontal) { if (isHorizontal) { x1 = 0; y1 = y; x2 = map.GetLength(0) - 1; y2 = y; } else { x1 = x; y1 = 0; x2 = x; y2 = map[0].GetLength(0) - 1; } this.angle = Math.Atan2(y2 - y1, x2 - x1); this.isHorizontal = isHorizontal; } public double Angle { get { return angle; } } public double Proximity(Cell cell) { double distX, distY; if (isHorizontal) { distX = cell.x - x1; distY = cell.y - y1; } else { distX = cell.x - x2; distY = cell.y - y2; } return Math.Sqrt(distX * distX + distY * distY); } public Point GetIntersection(Line other, bool isConvex) { double denominator, numerator, tx, ty; if (isHorizontal) { denominator = (other.y2 - other.y1) - (y2 - y1); numerator = ((other.x2 - other.x1) * (y1 - other.y1)) - ((x2 - x1) * (other.y2 - other.y1)); tx = numerator / denominator; ty = other.y1 + ((tx - other.x1) * (other.y2 - other.y1)) / (other.x2 - other.x1); } else { denominator = (other.x2 - other.x1) - (x2 - x1);</point></point></line></line></line></line></list></line></list></list></cell></cell></cell></list></cell></polygon></polygon></line>
以上が土壌サンプルの位置を表す 2D 点セット内の穴を特定して描写するにはどうすればよいでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

XMLは、特に構成ファイル、データストレージ、ネットワーク通信でデータを構成するための便利な方法を提供するため、Cで使用されます。 1)tinyxml、pugixml、rapidxmlなどの適切なライブラリを選択し、プロジェクトのニーズに従って決定します。 2)XML解析と生成の2つの方法を理解する:DOMは頻繁にアクセスと変更に適しており、SAXは大規模なファイルまたはストリーミングデータに適しています。 3)パフォーマンスを最適化する場合、TinyXMLは小さなファイルに適しています。PugixMLはメモリと速度でうまく機能し、RapidXMLは大きなファイルの処理に優れています。

C#とCの主な違いは、メモリ管理、多型の実装、パフォーマンスの最適化です。 1)C#はゴミコレクターを使用してメモリを自動的に管理し、Cは手動で管理する必要があります。 2)C#は、インターフェイスと仮想方法を介して多型を実現し、Cは仮想関数と純粋な仮想関数を使用します。 3)C#のパフォーマンスの最適化は、構造と並列プログラミングに依存しますが、Cはインライン関数とマルチスレッドを通じて実装されます。

DOMおよびSAXメソッドを使用して、CのXMLデータを解析できます。1)DOMのXMLをメモリに解析することは、小さなファイルに適していますが、多くのメモリを占有する可能性があります。 2)サックス解析はイベント駆動型であり、大きなファイルに適していますが、ランダムにアクセスすることはできません。適切な方法を選択してコードを最適化すると、効率が向上する可能性があります。

Cは、高性能と柔軟性のため、ゲーム開発、組み込みシステム、金融取引、科学的コンピューティングの分野で広く使用されています。 1)ゲーム開発では、Cは効率的なグラフィックレンダリングとリアルタイムコンピューティングに使用されます。 2)組み込みシステムでは、Cのメモリ管理とハードウェア制御機能が最初の選択肢になります。 3)金融取引の分野では、Cの高性能はリアルタイムコンピューティングのニーズを満たしています。 4)科学的コンピューティングでは、Cの効率的なアルゴリズムの実装とデータ処理機能が完全に反映されています。

Cは死んでいませんが、多くの重要な領域で栄えています。1)ゲーム開発、2)システムプログラミング、3)高性能コンピューティング、4)ブラウザとネットワークアプリケーション、Cは依然として主流の選択であり、その強力な活力とアプリケーションのシナリオを示しています。

C#とCの主な違いは、構文、メモリ管理、パフォーマンスです。1)C#構文は最新であり、LambdaとLinqをサポートし、CはC機能を保持し、テンプレートをサポートします。 2)C#はメモリを自動的に管理し、Cは手動で管理する必要があります。 3)CパフォーマンスはC#よりも優れていますが、C#パフォーマンスも最適化されています。

tinyxml、pugixml、またはlibxml2ライブラリを使用して、CでXMLデータを処理できます。1)XMLファイルを解析する:DOMまたはSAXメソッドを使用し、DOMは小さなファイルに適しており、SAXは大きなファイルに適しています。 2)XMLファイルを生成:データ構造をXML形式に変換し、ファイルに書き込みます。これらの手順を通じて、XMLデータを効果的に管理および操作できます。

CのXMLデータ構造を使用すると、TinyXMLまたはPUGIXMLライブラリを使用できます。 1)PUGIXMLライブラリを使用して、XMLファイルを解析して生成します。 2)本情報などの複雑なネストされたXML要素を処理します。 3)XML処理コードを最適化し、効率的なライブラリとストリーミング解析を使用することをお勧めします。これらの手順を通じて、XMLデータを効率的に処理できます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。
