


今日のコンテナ化された世界では、効率的なバックエンド アプリケーションの展開が非常に重要です。人気の Python フレームワークである FastAPI は、高速で高性能な API の作成に優れています。 依存関係管理を合理化するために、パッケージ マネージャーである uv
を使用します。
紫外線
uv
と Docker がインストールされていると仮定して、アプリ uv init simple-app
を作成しましょう。これにより以下が生成されます:
<code>simple-app/ ├── .python-version ├── README.md ├── hello.py └── pyproject.toml</code>
pyproject.toml
にはプロジェクトのメタデータが保持されます:
[project] name = "simple-app" version = "0.1.0" description = "Add your description here" readme = "README.md" requires-python = ">=3.11" dependencies = []
プロジェクトの依存関係を pyproject.toml
に追加します:
dependencies = [ "fastapi[standard]=0.114.2", "python-multipart=0.0.7", "email-validator=2.1.0", "pydantic>2.0", "SQLAlchemy>2.0", "alembic=1.12.1", ] [tool.uv] dev-dependencies = [ "pytest=7.4.3", "mypy=1.8.0", "ruff=0.2.2", "pre-commit=4.0.0", ]
[tool.uv]
セクションでは、デプロイメント中に除外される開発依存関係を定義します。 uv sync
を実行して:
-
uv.lock
. を作成します。
- 仮想環境 (
.venv
) を作成します。uv
必要に応じて Python インタープリターをダウンロードします。 - 依存関係をインストールします。
高速API
FastAPI アプリケーション構造を作成します:
<code>recipe-app/ ├── app/ │ ├── main.py │ ├── __init__.py │ └── ... ├── .python-version ├── README.md └── pyproject.toml</code>
app/main.py
内:
from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class Hello(BaseModel): message: str @app.get("/", response_model=Hello) async def hello() -> Hello: return Hello(message="Hi, I am using FastAPI")
次で実行します: uv run fastapi dev app/main.py
。 次のような出力が表示されます:
https://www.php.cn/link/c099034308f2a231c24281de338726c1 からアクセスします。
ドッカー
Dockerize をしましょう。コンテナ内で開発します。 Dockerfile
:
FROM python:3.11-slim ENV PYTHONUNBUFFERED=1 COPY --from=ghcr.io/astral-sh/uv:0.5.11 /uv /uvx /bin/ ENV UV_COMPILE_BYTE=1 ENV UV_LINK_MODE=copy WORKDIR /app ENV PATH="/app/.venv/bin:$PATH" COPY ./pyproject.toml ./uv.lock ./.python-version /app/ RUN --mount=type=cache,target=/root/.cache/uv \ --mount=type=bind,source=uv.lock,target=uv.lock \ --mount=type=bind,source=pyproject.toml,target=pyproject.toml \ uv sync --frozen --no-install-project --no-dev COPY ./app /app/app RUN --mount=type=cache,target=/root/.cache/uv \ uv sync --frozen --no-dev CMD ["fastapi", "dev", "app/main.py", "--host", "0.0.0.0"]
コンテナ管理を簡単にするには、docker-compose.yaml
:
services: app: build: context: . dockerfile: Dockerfile working_dir: /app volumes: - ./app:/app/app ports: - "${APP_PORT:-8000}:8000" environment: - DATABASE_URL=${DATABASE_URL} depends_on: - postgres postgres: image: postgres:15 environment: POSTGRES_DB: ${POSTGRES_DB} POSTGRES_USER: ${POSTGRES_USER} POSTGRES_PASSWORD: ${POSTGRES_PASSWORD} volumes: - postgres_data:/var/lib/postgresql/data volumes: postgres_data: {}
環境変数を含む .env
ファイルを作成します。 次のコマンドを使用して実行します: docker compose up --build
.
[tool.uv]
および開発ツール
[tool.uv]
の pyproject.toml
セクションには、開発ツールがリストされています。
- pytest: テスト フレームワーク (ここでは範囲外)。
-
mypy: 静的型チェッカー。手動で実行:
uv run mypy app
. - ruff: 高速リンター (複数のツールを置き換えます)。
-
pre-commit: プリコミットフックを管理します。
.pre-commit-config.yaml
: を作成します
repos: - repo: https://github.com/pre-commit/pre-commit-hooks rev: v4.4.0 hooks: - id: check-added-large-files - id: check-toml - id: check-yaml args: - --unsafe - id: end-of-file-fixer - id: trailing-whitespace - repo: https://github.com/astral-sh/ruff-pre-commit rev: v0.8.6 hooks: - id: ruff args: [--fix] - id: ruff-format
pyproject.toml
と mypy
の ruff
構成を追加します (例は元のテキストに示されています)。 リアルタイム lint のために VS Code Ruff 拡張機能をインストールします。 この設定により、一貫したコード スタイル、型チェック、およびコミット前チェックが保証され、効率化されたワークフローが実現します。
以上がスケーラブルな Python バックエンド: uv、Docker、プリコミットを使用したコンテナ化された FastAPI アプリケーションの構築: ステップバイステップ ガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

Pythonオブジェクトのシリアル化と脱介入は、非自明のプログラムの重要な側面です。 Pythonファイルに何かを保存すると、構成ファイルを読み取る場合、またはHTTPリクエストに応答する場合、オブジェクトシリアル化と脱滑り化を行います。 ある意味では、シリアル化と脱派化は、世界で最も退屈なものです。これらすべての形式とプロトコルを気にするのは誰ですか? Pythonオブジェクトを維持またはストリーミングし、後で完全に取得したいと考えています。 これは、概念レベルで世界を見るのに最適な方法です。ただし、実用的なレベルでは、選択したシリアル化スキーム、形式、またはプロトコルは、プログラムの速度、セキュリティ、メンテナンスの自由、およびその他の側面を決定する場合があります。

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

このチュートリアルは、単純なツリーナビゲーションを超えたDOM操作に焦点を当てた、美しいスープの以前の紹介に基づいています。 HTML構造を変更するための効率的な検索方法と技術を探ります。 1つの一般的なDOM検索方法はExです

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

Dreamweaver Mac版
ビジュアル Web 開発ツール

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ホットトピック



