このブログ投稿では、OpenWeatherMap API と AWS サービスを使用して気象データ分析パイプラインを構築する方法を説明します。 このパイプラインは気象データを取得し、S3 に保存し、AWS Glue でカタログ化し、Amazon Athena でクエリできるようにします。
プロジェクト概要
このプロジェクトは、複数の都市から気象データを取得し、AWS S3 に保存し、AWS Glue 経由でカタログ化し、Amazon Athena を使用したクエリを可能にする、スケーラブルなデータ パイプラインを作成します。
初期アーキテクチャとアーキテクチャ図
プロジェクトの構造と前提条件
始める前に、次のものが揃っていることを確認してください。
- Docker: ローカルにインストールされています。
- AWS アカウント: 必要な権限 (S3 バケット、Glue データベース、Glue クローラー) を持つ。
- OpenWeatherMap API キー: OpenWeatherMap から取得します。
セットアップガイド
-
リポジトリのクローンを作成します:
git clone https://github.com/Rene-Mayhrem/weather-insights.git cd weather-data-analytics
-
.env
ファイルを作成します: AWS 認証情報と API キーを使用して、ルート ディレクトリに.env
ファイルを作成します:<code>AWS_ACCESS_KEY_ID=<your-access-key-id> AWS_SECRET_ACCESS_KEY=<your-secret-access-key> AWS_REGION=us-east-1 S3_BUCKET_NAME=<your-s3-bucket-name> OPENWEATHER_API_KEY=<your-openweather-api-key></your-openweather-api-key></your-s3-bucket-name></your-secret-access-key></your-access-key-id></code>
-
cities.json
を作成します: 都市をリストするcities.json
を作成します:{ "cities": [ "London", "New York", "Tokyo", "Paris", "Berlin" ] }
-
Docker Compose: ビルドして実行:
docker compose run terraform init docker compose run python
使用法
-
インフラストラクチャの検証: Terraform が AWS コンソールで AWS リソース (S3、Glue データベース、Glue クローラー) を作成したかどうかを確認します。
-
データアップロードの確認: AWS コンソールを介して、Python スクリプトが気象データ (JSON ファイル) を S3 バケットにアップロードしたことを確認します。
-
Glue クローラーの実行: Glue クローラーは自動的に実行されます。 Glue コンソールでの実行とデータ カタログ化を確認します。
-
Athena によるクエリ: AWS マネジメントコンソールを使用して Athena にアクセスし、カタログ化されたデータに対して SQL クエリを実行します。
主要コンポーネント
- Docker: Python と Terraform に一貫した環境を提供します。
- Terraform: AWS インフラストラクチャ (S3、Glue、Athena) を管理します。
- Python: 気象データを取得して S3 にアップロードします。
- 接着剤: S3 データをカタログします。
- Athena: カタログ化されたデータをクエリします。
結論
このガイドは、AWS と OpenWeatherMap を使用してスケーラブルな気象データ分析パイプラインを構築するのに役立ちます。 パイプラインは簡単に拡張して、より多くの都市やデータ ソースを含めることができます。
以上がAWS と OpenWeatherMap API を使用して気象データ分析パイプラインを構築するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

ドリームウィーバー CS6
ビジュアル Web 開発ツール

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。
