検索
ホームページバックエンド開発Python チュートリアルPython: パターンへのリファクタリング

Python: Refactoring to Patterns

写真提供:パトリック・ホー

この簡潔なガイドでは、Python コードの匂いを対応するデザイン パターン ソリューションにマッピングします。

class CodeSmellSolutions:
    DUPLICATED_CODE = [
        "form_template_method",
        "introduce_polymorphic_creation_with_factory_method",
        "chain_constructors",
        "replace_one__many_distinctions_with_composite",
        "extract_composite",
        "unify_interfaces_with_adapter",
        "introduce_null_object",
    ]
    LONG_METHOD = [
        "compose_method",
        "move_accumulation_to_collecting_parameter",
        "replace_conditional_dispatcher_with_command",
        "move_accumulation_to_visitor",
        "replace_conditional_logic_with_strategy",
    ]
    CONDITIONAL_COMPLEXITY = [  # Complex conditional logic
        "replace_conditional_logic_with_strategy",
        "move_emblishment_to_decorator",
        "replace_state_altering_conditionals_with_state",
        "introduce_null_object",
    ]
    PRIMITIVE_OBSESSION = [
        "replace_type_code_with_class",
        "replace_state_altering_conditionals_with_state",
        "replace_conditional_logic_with_strategy",
        "replace_implict_tree_with_composite",
        "replace_implicit_language_with_interpreter",
        "move_emblishment_to_decorator",
        "encapsulate_composite_with_builder",
    ]
    INDECENT_EXPOSURE = [  # Lack of information hiding
        "encapsulate_classes_with_factory"
    ]
    SOLUTION_SPRAWL = [  # Scattered logic/responsibility
        "move_creation_knowledge_to_factory"
    ]
    ALTERNATIVE_CLASSES_WITH_DIFFERENT_INTERFACES = [  # Similar classes, different interfaces
        "unify_interfaces_with_adapter"
    ]
    LAZY_CLASS = [  # Insufficient functionality
        "inline_singleton"
    ]
    LARGE_CLASS = [
        "replace_conditional_dispatcher_with_command",
        "replace_state_altering_conditionals_with_state",
        "replace_implict_tree_with_composite",
    ]
    SWITCH_STATEMENTS = [  # Complex switch statements
        "replace_conditional_dispatcher_with_command",
        "move_accumulation_to_visitor",
    ]
    COMBINATION_EXPLOSION = [  # Similar code for varying data
        "replace_implicit_language_with_interpreter"
    ]
    ODDBALL_SOLUTIONS = [  # Multiple solutions for same problem
        "unify_interfaces_with_adapter"
    ]

Python でのリファクタリングの例

このプロジェクトは、パターンへのリファクタリング (Joshua Kerievsky) のリファクタリング例を Python に翻訳します。各例では、元のコードとリファクタリングされたコードを示し、改善点を強調しています。 リファクタリング プロセスには、UML 図の解釈と、Java コードを Python のニュアンスに適応させる (循環インポートとインターフェイスの処理) ことが含まれていました。

例: Compose メソッド

「Compose Method」リファクタリングは、より小さく、より意味のあるメソッドを抽出することで複雑なコードを簡素化します。

# Original (complex) code
def add(element):
    readonly = False
    size = 0
    elements = []
    if not readonly:
        new_size = size + 1
        if new_size > len(elements):
            new_elements = []
            for i in range(size):
                new_elements[i] = elements[i]  # Potential IndexError
            elements = new_elements
        size += 1
        elements[size] = element # Potential IndexError

# Refactored (simplified) code
def is_at_capacity(new_size, elements):
    return new_size > len(elements)

def grow_array(size, elements):
    new_elements = [elements[i] for i in range(size)] # List comprehension for clarity
    return new_elements

def add_element(elements, element, size):
    elements.append(element) # More Pythonic approach
    return len(elements) -1

def add_refactored(element):
    readonly = False
    if readonly:
        return
    size = len(elements)
    new_size = size + 1
    if is_at_capacity(new_size, elements):
        elements = grow_array(size, elements)
    size = add_element(elements, element, size)

例: ポリモーフィズム (テスト自動化)

この例は、テスト自動化におけるポリモーフィズムを示し、再利用可能にするためにテスト設定を抽象化します。

# Original code (duplicate setup)
class TestCase:
    pass

class DOMBuilder:
    def __init__(self, orders): pass
    def calc(self): return 42

class XMLBuilder:
    def __init__(self, orders): pass
    def calc(self): return 42

class DOMTest(TestCase):
    def run_dom_test(self):
        expected = 42
        builder = DOMBuilder("orders")
        assert builder.calc() == expected

class XMLTest(TestCase):
    def run_xml_test(self):
        expected = 42
        builder = XMLBuilder("orders")
        assert builder.calc() == expected

# Refactored code (polymorphic setup)
class OutputBuilder:
    def calc(self): raise NotImplementedError

class DOMBuilderRefac(OutputBuilder):
    def calc(self): return 42

class XMLBuilderRefac(OutputBuilder):
    def calc(self): return 42

class TestCaseRefac:
    def create_builder(self): raise NotImplementedError
    def run_test(self):
        expected = 42
        builder = self.create_builder()
        assert builder.calc() == expected

class DOMTestRefac(TestCaseRefac):
    def create_builder(self): return DOMBuilderRefac()

class XMLTestRefac(TestCaseRefac):
    def create_builder(self): return XMLBuilderRefac()

例: 訪問者のパターン

Visitor パターンは、クラスをメソッドから切り離します。

# Original code (conditional logic in TextExtractor)
class Node: pass
class LinkTag(Node): pass
class Tag(Node): pass
class StringNode(Node): pass

class TextExtractor:
    def extract_text(self, nodes):
        result = []
        for node in nodes:
            if isinstance(node, StringNode): result.append("string")
            elif isinstance(node, LinkTag): result.append("linktag")
            elif isinstance(node, Tag): result.append("tag")
            else: result.append("other")
        return result

# Refactored code (using Visitor)
class NodeVisitor:
    def visit_link_tag(self, node): return "linktag"
    def visit_tag(self, node): return "tag"
    def visit_string_node(self, node): return "string"

class Node:
    def accept(self, visitor): pass

class LinkTagRefac(Node):
    def accept(self, visitor): return visitor.visit_link_tag(self)

class TagRefac(Node):
    def accept(self, visitor): return visitor.visit_tag(self)

class StringNodeRefac(Node):
    def accept(self, visitor): return visitor.visit_string_node(self)

class TextExtractorVisitor(NodeVisitor):
    def extract_text(self, nodes):
        result = [node.accept(self) for node in nodes]
        return result

結論

リファクタリングを通じて設計パターンを学習するためのこの実践的で実践的なアプローチにより、理解が大幅に深まります。 コードの翻訳中に遭遇する課題により、理論的な知識が強化されます。

以上がPython: パターンへのリファクタリングの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonの融合リスト:適切な方法を選択しますPythonの融合リスト:適切な方法を選択しますMay 14, 2025 am 12:11 AM

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3の2つのリストを連結する方法は?Python 3の2つのリストを連結する方法は?May 14, 2025 am 12:09 AM

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Python Concatenateリスト文字列Python Concatenateリスト文字列May 14, 2025 am 12:08 AM

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

Pythonの実行、それは何ですか?Pythonの実行、それは何ですか?May 14, 2025 am 12:06 AM

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Python:重要な機能は何ですかPython:重要な機能は何ですかMay 14, 2025 am 12:02 AM

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Python:コンパイラまたはインタープリター?Python:コンパイラまたはインタープリター?May 13, 2025 am 12:10 AM

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

ループvs whileループ用のpython:いつ使用するか?ループvs whileループ用のpython:いつ使用するか?May 13, 2025 am 12:07 AM

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

Pythonループ:最も一般的なエラーPythonループ:最も一般的なエラーMay 13, 2025 am 12:07 AM

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。