C# の非同期ロックを使用した断続的なファイル アクセス エラーの解決
非同期ロック、特にハッシュされた URL や AsyncDuplicateLock
のようなクラスを使用する場合、断続的なファイル アクセス エラーが発生することがあります。 これは多くの場合、同時ディクショナリ内でのセマフォの不適切な処理が原因で発生します。 初期の欠陥のあるアプローチは次のようになります:
SemaphoreSlim locker; if (SemaphoreSlims.TryRemove(s, out locker)) { locker.Release(); locker.Dispose(); }
ここでの問題は、セマフォを解放する前に削除することです。これにより、セマフォの過剰なチャーンが発生し、辞書から削除された後もセマフォが使用され続けることになります。
堅牢なソリューションでは、参照カウントを使用してセマフォの有効期間を管理します。
public sealed class AsyncDuplicateLock { private sealed class RefCounted<T> { public RefCounted(T value) { RefCount = 1; Value = value; } public int RefCount { get; set; } public T Value { get; private set; } } private static readonly Dictionary<object, RefCounted<SemaphoreSlim>> SemaphoreSlims = new Dictionary<object, RefCounted<SemaphoreSlim>>(); private SemaphoreSlim GetOrCreate(object key) { RefCounted<SemaphoreSlim> item; lock (SemaphoreSlims) { if (SemaphoreSlims.TryGetValue(key, out item)) { ++item.RefCount; } else { item = new RefCounted<SemaphoreSlim>(new SemaphoreSlim(1, 1)); SemaphoreSlims[key] = item; } } return item.Value; } public IDisposable Lock(object key) { GetOrCreate(key).Wait(); return new Releaser { Key = key }; } public async Task<IDisposable> LockAsync(object key) { await GetOrCreate(key).WaitAsync().ConfigureAwait(false); return new Releaser { Key = key }; } private sealed class Releaser : IDisposable { public object Key { get; set; } public void Dispose() { RefCounted<SemaphoreSlim> item; lock (SemaphoreSlims) { item = SemaphoreSlims[Key]; --item.RefCount; if (item.RefCount == 0) SemaphoreSlims.Remove(Key); } item.Value.Release(); } } }
この改訂されたコードは、RefCounted<t></t>
ラッパーを使用してセマフォ参照を追跡します。 セマフォは参照カウントが 0 に達した場合にのみディクショナリから削除されるため、適切な解放が確保され、早期の破棄が防止され、断続的なファイル アクセス エラーが排除されます。
以上がC# の非同期ロックで断続的なファイル アクセス エラーを回避するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

CプロジェクトにXMLを統合することは、次の手順を通じて達成できます。1)PUGIXMLまたはTinyXMLライブラリを使用してXMLファイルを解析および生成すること、2)解析のためのDOMまたはSAXメソッドを選択、3)ネストされたノードとマルチレベルのプロパティを処理する、4)デバッグ技術と最高の慣行を使用してパフォーマンスを最適化します。

XMLは、特に構成ファイル、データストレージ、ネットワーク通信でデータを構成するための便利な方法を提供するため、Cで使用されます。 1)tinyxml、pugixml、rapidxmlなどの適切なライブラリを選択し、プロジェクトのニーズに従って決定します。 2)XML解析と生成の2つの方法を理解する:DOMは頻繁にアクセスと変更に適しており、SAXは大規模なファイルまたはストリーミングデータに適しています。 3)パフォーマンスを最適化する場合、TinyXMLは小さなファイルに適しています。PugixMLはメモリと速度でうまく機能し、RapidXMLは大きなファイルの処理に優れています。

C#とCの主な違いは、メモリ管理、多型の実装、パフォーマンスの最適化です。 1)C#はゴミコレクターを使用してメモリを自動的に管理し、Cは手動で管理する必要があります。 2)C#は、インターフェイスと仮想方法を介して多型を実現し、Cは仮想関数と純粋な仮想関数を使用します。 3)C#のパフォーマンスの最適化は、構造と並列プログラミングに依存しますが、Cはインライン関数とマルチスレッドを通じて実装されます。

DOMおよびSAXメソッドを使用して、CのXMLデータを解析できます。1)DOMのXMLをメモリに解析することは、小さなファイルに適していますが、多くのメモリを占有する可能性があります。 2)サックス解析はイベント駆動型であり、大きなファイルに適していますが、ランダムにアクセスすることはできません。適切な方法を選択してコードを最適化すると、効率が向上する可能性があります。

Cは、高性能と柔軟性のため、ゲーム開発、組み込みシステム、金融取引、科学的コンピューティングの分野で広く使用されています。 1)ゲーム開発では、Cは効率的なグラフィックレンダリングとリアルタイムコンピューティングに使用されます。 2)組み込みシステムでは、Cのメモリ管理とハードウェア制御機能が最初の選択肢になります。 3)金融取引の分野では、Cの高性能はリアルタイムコンピューティングのニーズを満たしています。 4)科学的コンピューティングでは、Cの効率的なアルゴリズムの実装とデータ処理機能が完全に反映されています。

Cは死んでいませんが、多くの重要な領域で栄えています。1)ゲーム開発、2)システムプログラミング、3)高性能コンピューティング、4)ブラウザとネットワークアプリケーション、Cは依然として主流の選択であり、その強力な活力とアプリケーションのシナリオを示しています。

C#とCの主な違いは、構文、メモリ管理、パフォーマンスです。1)C#構文は最新であり、LambdaとLinqをサポートし、CはC機能を保持し、テンプレートをサポートします。 2)C#はメモリを自動的に管理し、Cは手動で管理する必要があります。 3)CパフォーマンスはC#よりも優れていますが、C#パフォーマンスも最適化されています。

tinyxml、pugixml、またはlibxml2ライブラリを使用して、CでXMLデータを処理できます。1)XMLファイルを解析する:DOMまたはSAXメソッドを使用し、DOMは小さなファイルに適しており、SAXは大きなファイルに適しています。 2)XMLファイルを生成:データ構造をXML形式に変換し、ファイルに書き込みます。これらの手順を通じて、XMLデータを効果的に管理および操作できます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

WebStorm Mac版
便利なJavaScript開発ツール

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)
