


大規模なデータセットの複数列ピボットのための PostgreSQL の tablefunc
の最適化
大規模なデータセットを長い形式から広い形式に効率的に変換する (ピボットする) ことは、データ分析にとって重要です。この記事では、特に数十億行を処理する場合の、複数列ピボットに PostgreSQL の tablefunc
拡張機能を使用する際の課題と解決策について説明します。
ピボットの課題に取り組む
一般的な問題には、tablefunc
を使用した複数の変数を含むデータのピボット処理が含まれます。 たとえば、time
、entity
、status
、measurement
などの列を含むデータを、各 measurement
値が個別の列を占めるワイド形式に変換します。
非効率の根本原因の特定
非効率の主な原因は、多くの場合、tablefunc
クエリ内の列の順序が正しくないことにあります。 crosstab
関数は特定の順序を想定しています。行識別子 (データ分離を定義) が最初の列で、その後に追加の列が続き、最後にピボットされる値が続きます。 time
列と entity
列を入れ替えるなど、順序が間違っていると、行識別子の誤解が生じ、パフォーマンスに重大な影響を及ぼします。
解決策: 正しい列の順序
解決策には、crosstab
の要件に準拠するように列の順序を慎重に変更することが含まれます。 以下の例はこの修正を示しています。entity
は行識別子、timeof
は追加の列です。
crosstab( 'SELECT entity, timeof, status, ct FROM t4 ORDER BY 1,2,3' ,$$VALUES (1::text), (0::text)$$)
例と出力
この例は、dense_rank()
を使用して一意の行識別子を確保し、generate_series
を使用してピボットされる列の数を定義する、修正されたクエリを示しています。
SELECT localt, entity , msrmnt01, msrmnt02, msrmnt03, msrmnt04, msrmnt05 -- , more? FROM crosstab( 'SELECT dense_rank() OVER (ORDER BY localt, entity)::int AS row_name , localt, entity , msrmnt, val FROM test ORDER BY localt, entity, msrmnt' , 'SELECT generate_series(1,5)' ) AS ct (row_name int, localt timestamp, entity int , msrmnt01 float8, msrmnt02 float8, msrmnt03 float8, msrmnt04 float8, msrmnt05 float8 );
この修正されたアプローチにより、非常に大規模なデータセットであっても、tablefunc
を使用した効率的な複数列ピボットが保証されます。 最適なパフォーマンスを得るには、適切な列の順序が最も重要です。
以上が大規模なデータセットに対して PostgreSQL の「tablefunc」を使用して複数列のピボットを効率的に実現するにはどうすればよいでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

tograntpermissionstonewmysqlusers、フォローステープ:1)Accessmysqlasauserwithsufthiveerprivileges、2)createanewuser withthecreateusercommand、3)usethegrantcommandtospecifypermissionsionsionsionsionsionsionsionsionsionsionselect、挿入、挿入、挿入、更新、4)

toadduusersinmysqucrectivally andcurally、soflowthesteps:1)usethecreateuserstatementtoaddanewuser、指定するhostandastrongpassword.2)補助金を使用して、補助金を使用して、補助すること、

toaddanewuserwithpermissionsinmysql、followthesesteps:1)createtheuserwithcreateuser'newuser '@' localhost'identifiedifiedifiedifiedby'pa ssword ';。2)grantreadacestoalltablesin'mydatabase'withgrantselectonmydatabase.to'newuser'@'localhost';。3)grantwriteaccessto '

MySQLの文字列データ型には、CHAR、VARCHAR、バイナリ、Varbinary、BLOB、およびテキストが含まれます。照合は、文字列の比較とソートを決定します。 1.Charは固定長の文字列に適しており、Varcharは可変長文字列に適しています。 2.バイナリとVarbinaryはバイナリデータに使用され、BLOBとテキストは大規模なオブジェクトデータに使用されます。 3. UTF8MB4_UNICODE_CIなどのルールのソートは、高度と小文字を無視し、ユーザー名に適しています。 UTF8MB4_BINは症例に敏感であり、正確な比較が必要なフィールドに適しています。

最適なMySQLVarcharの列の長さの選択は、データ分析に基づいており、将来の成長を検討し、パフォーマンスの影響を評価し、文字セットの要件を評価する必要があります。 1)データを分析して、典型的な長さを決定します。 2)将来の拡張スペースを予約します。 3)パフォーマンスに対する大きな長さの影響に注意してください。 4)ストレージに対する文字セットの影響を考慮します。これらの手順を通じて、データベースの効率とスケーラビリティを最適化できます。

mysqlblobshavelimits:tinyblob(255bytes)、blob(65,535bytes)、mediumblob(16,777,215bytes)、andlongblob(4,294,967,295bytes).tousebl難易度:1)PROFFORMANCESANDSTORERGEBLOBSEXTERNALLY;

MySQLでユーザーの作成を自動化するための最良のツールとテクノロジーには、次のものがあります。1。MySQLWorkBench、中小サイズの環境に適した、使いやすいがリソース消費量が高い。 2。アンシブル、マルチサーバー環境に適した、シンプルだが急な学習曲線。 3.カスタムPythonスクリプト、柔軟性がありますが、スクリプトセキュリティを確保する必要があります。 4。大規模な環境に適した人形とシェフ、複雑ですがスケーラブル。選択する際には、スケール、学習曲線、統合のニーズを考慮する必要があります。

はい、youcansearchinsideablobinmysqlusingspecifictechniques.1)converttheblobtoautf-8stringwithconvert function andsearchusinglike.2)


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

Dreamweaver Mac版
ビジュアル Web 開発ツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)
