大規模な SQL クエリからの Pandas DataFrame の作成: メモリ管理戦略
大規模な SQL テーブルを処理すると、Pandas DataFrame を作成するときにメモリ エラーが発生することがよくあります。 この記事では、大規模なデータセットを処理し、データの整合性を維持しながらメモリの枯渇を防ぐための効果的な方法を検討します。
Pandas の chunksize
パラメータの活用
Pandas (バージョン 0.15 以降) は、chunksize
関数内の read_sql
パラメーターという堅牢なソリューションを提供します。これにより、増分データの取得と処理が可能になり、メモリの過負荷を防ぐことができます。
使用方法は次のとおりです:
sql = "SELECT * FROM My_Table" for chunk in pd.read_sql_query(sql, engine, chunksize=5): # Process each chunk (e.g., append to a list, perform calculations, etc.) print(chunk)
このコードは 5 行単位でデータをフェッチします。 5
を、システムのメモリ容量に基づいた適切なチャンク サイズに置き換えます。 それぞれの chunk
は DataFrame であり、管理可能な部分での処理を可能にします。
代替アプローチ
多くの場合 chunksize
で十分ですが、他の手法によりさらに制御できます。
-
データベース API: データベース API (PostgreSQL の psycopg2 など) との直接対話により、データ取得を詳細に制御できるため、ページネーション技術を使用して特定のデータ範囲をフェッチできます。
-
ジェネレータ: ジェネレータは行ごとにデータを生成し、メモリ フットプリントを大幅に削減します。これは、
chunksize
でも不十分である可能性がある非常に大きなテーブルの場合に特に便利です。 -
低レベルのデータベース操作: 究極の制御と最適化のために、低レベルのデータベース機能を活用して、特定のニーズとデータベース システムに合わせたカスタム データ取得メカニズムを作成します。
最適なアプローチは、プロジェクトの詳細、パフォーマンスの要求、開発者の習熟度などの要因によって異なります。 最も効率的なソリューションを選択するには、各方法の長所と制限を慎重に評価することが重要です。
以上がPandas DataFrame の作成時にメモリ エラーを回避するために大規模な SQL クエリを効率的に処理するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

WebアプリケーションにおけるMySQLの主な役割は、データを保存および管理することです。 1.MYSQLは、ユーザー情報、製品カタログ、トランザクションレコード、その他のデータを効率的に処理します。 2。SQLクエリを介して、開発者はデータベースから情報を抽出して動的なコンテンツを生成できます。 3.MYSQLは、クライアントサーバーモデルに基づいて機能し、許容可能なクエリ速度を確保します。

MySQLデータベースを構築する手順には次のものがあります。1。データベースとテーブルの作成、2。データの挿入、および3。クエリを実行します。まず、createdAtabaseおよびcreateTableステートメントを使用してデータベースとテーブルを作成し、InsertINTOステートメントを使用してデータを挿入し、最後にSelectステートメントを使用してデータを照会します。

MySQLは、使いやすく強力であるため、初心者に適しています。 1.MYSQLはリレーショナルデータベースであり、CRUD操作にSQLを使用します。 2。インストールは簡単で、ルートユーザーのパスワードを構成する必要があります。 3.挿入、更新、削除、および選択してデータ操作を実行します。 4. Orderby、Where and Joinは複雑なクエリに使用できます。 5.デバッグでは、構文をチェックし、説明を使用してクエリを分析する必要があります。 6.最適化の提案には、インデックスの使用、適切なデータ型の選択、優れたプログラミング習慣が含まれます。

MySQLは初心者に適しています。1)インストールと構成、2)リッチラーニングリソース、3)直感的なSQL構文、4)強力なツールサポート。それにもかかわらず、初心者はデータベースの設計、クエリの最適化、セキュリティ管理、データのバックアップなどの課題を克服する必要があります。

はい、sqlisaprogramginglanguagespecializedfordatamanamanagement.1)それはdeclarative、focusingonwhattoachieveratherthanhow.2)

酸性属性には、原子性、一貫性、分離、耐久性が含まれ、データベース設計の基礎です。 1.原子性は、トランザクションが完全に成功するか、完全に失敗することを保証します。 2.一貫性により、データベースがトランザクションの前後に一貫性を保証します。 3.分離により、トランザクションが互いに干渉しないようにします。 4.永続性により、トランザクションの提出後にデータが永久に保存されることが保証されます。

MySQLは、データベース管理システム(DBMS)であるだけでなく、プログラミング言語にも密接に関連しています。 1)DBMSとして、MySQLはデータを保存、整理、取得するために使用され、インデックスを最適化するとクエリのパフォーマンスが向上する可能性があります。 2)SQLとPythonに埋め込まれたプログラミング言語とSQLalchemyなどのORMツールを使用すると、操作を簡素化できます。 3)パフォーマンスの最適化には、インデックス、クエリ、キャッシュ、ライブラリ、テーブル分割、およびトランザクション管理が含まれます。

MySQLはSQLコマンドを使用してデータを管理します。 1.基本コマンドには、select、挿入、更新、削除が含まれます。 2。高度な使用には、参加、サブクエリ、および集計関数が含まれます。 3.一般的なエラーには、構文、ロジック、パフォーマンスの問題が含まれます。 4。最適化のヒントには、インデックスの使用、Select*の回避、制限の使用が含まれます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

ドリームウィーバー CS6
ビジュアル Web 開発ツール
