このチュートリアルでは、世界人口データセットを使用した PySpark の機能を示します。
事前セットアップ
まず、Python がインストールされていることを確認します。 以下を使用して端末を確認してください:
python --version
インストールされていない場合は、公式 Web サイトから Python をダウンロードし、オペレーティング システムに適切なバージョンを選択します。
Jupyter Notebook をインストールします (手順はオンラインで入手可能)。 あるいは、Python および Jupyter Notebook と多くの科学ライブラリを含む Anaconda をインストールします。
ターミナルから Jupyter Notebook を起動します:
jupyter notebook
新しい Python 3 ノートブックを作成します。必要なライブラリをインストールします:
!pip install pandas !pip install pyspark !pip install findspark !pip install pyspark_dist_explore
datahub.io から人口データセット (CSV 形式) をダウンロードし、その場所をメモします。
ライブラリのインポートと Spark の初期化
必要なライブラリをインポートします:
import pandas as pd import matplotlib.pyplot as plt import findspark findspark.init() from pyspark.sql import SparkSession from pyspark.sql.types import StructType, IntegerType, FloatType, StringType, StructField from pyspark_dist_explore import hist
Spark セッションを初期化する前に、Java がインストールされていることを確認してください。
java -version
そうでない場合は、Java Development Kit (JDK) をインストールします。
Spark セッションを初期化します:
spark = SparkSession \ .builder \ .appName("World Population Analysis") \ .config("spark.sql.execution.arrow.pyspark.enabled", "true") \ .getOrCreate()
セッションを確認します:
spark
ホスト名解決に関する警告が表示された場合は、SPARK_LOCAL_IP
またはlocal-spark-env.sh
のspark-env.sh
を127.0.0.1
以外のIPアドレス(例:export SPARK_LOCAL_IP="10.0.0.19"
)に設定してから再初期化してください。
データのロードと操作
Pandas DataFrame にデータをロードします:
pd_dataframe = pd.read_csv('population.csv') pd_dataframe.head()
Spark DataFrame にデータをロードします:
sdf = spark.createDataFrame(pd_dataframe) sdf.printSchema()
処理を容易にするために列の名前を変更します:
sdf_new = sdf.withColumnRenamed("Country Name", "Country_Name").withColumnRenamed("Country Code", "Country_Code") sdf_new.head(5)
一時ビューを作成します:
sdf_new.createTempView('population_table')
SQL クエリによるデータ探索
SQL クエリを実行します:
spark.sql("SELECT * FROM population_table").show() spark.sql("SELECT Country_Name FROM population_table").show()
データの視覚化
アルバの人口のヒストグラムをプロットします:
sdf_population = sdf_new.filter(sdf_new.Country_Name == 'Aruba') fig, ax = plt.subplots() hist(ax, sdf_population.select('Value'), bins=20, color=['red'])
この改訂された回答では、元の構造と内容は維持されていますが、より自然な流れと明瞭さの向上のために、若干異なる言葉遣いや表現が使用されています。 画像は元の形式と場所に残ります。
以上がPySpark を使用したデータ分析の概要の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、
