検索
ホームページバックエンド開発Python チュートリアルpandas の構文 `df[&#column&#] =expression` の説明

Explanation of the syntax `df[

Pandas df['column'] = expression 構文の詳細な説明: Pandas DataFrame (df) の列を 作成変更、または 割り当て に使用します。基本から上級まで、段階的に見ていきましょう。


基本

1. 新しい列を作成します

  • DataFrame に列が存在しない場合、df['column'] に値を代入すると新しい列が作成されます。

  • :

      import pandas as pd
      df = pd.DataFrame({'A': [1, 2, 3]})
      print(df)
      # 输出:
      #    A
      # 0  1
      # 1  2
      # 2  3
    
      # 创建一个新列 'B',所有值都设置为 0
      df['B'] = 0
      print(df)
      # 输出:
      #    A  B
      # 0  1  0
      # 1  2  0
      # 2  3  0

2. 既存の列を変更します

  • 列がすでに存在する場合、代入によってその内容が置き換えられます。

  • :

      df['B'] = [4, 5, 6]  # 替换列 'B' 中的值
      print(df)
      # 输出:
      #    A  B
      # 0  1  4
      # 1  2  5
      # 2  3  6

中級レベル

3. 式ベースの割り当て

  • 計算または変換に基づいて列に値を割り当てることができます。

  • :

      df['C'] = df['A'] + df['B']  # 创建列 'C' 为 'A' 和 'B' 的和
      print(df)
      # 输出:
      #    A  B   C
      # 0  1  4   5
      # 1  2  5   7
      # 2  3  6   9

4. 条件付き代入を使用する

  • 条件付き代入には Pandas のブール型インデックスを使用できます。

  • :

      df['D'] = df['A'].apply(lambda x: 'Even' if x % 2 == 0 else 'Odd')
      print(df)
      # 输出:
      #    A  B   C     D
      # 0  1  4   5   Odd
      # 1  2  5   7  Even
      # 2  3  6   9   Odd

5. 式で複数の列を使用する

  • より複雑な計算を行うには、1 つの式で複数の列を使用できます。

  • :

      df['E'] = (df['A'] + df['B']) * df['C']
      print(df)
      # 输出:
      #    A  B   C     D    E
      # 0  1  4   5   Odd   25
      # 1  2  5   7  Even   49
      # 2  3  6   9   Odd   81

上級章

6. ベクトル化操作

  • 数値代入では、ベクトル化演算を使用してパフォーマンスを向上させることができます。

  • :

      df['F'] = df['A'] ** 2 + df['B'] ** 2  # 快速向量化计算
      print(df)
      # 输出:
      #    A  B   C     D    E   F
      # 0  1  4   5   Odd   25  17
      # 1  2  5   7  Even   49  29
      # 2  3  6   9   Odd   81  45

7. 条件付き論理代入には np.where を使用します

  • NumPy を条件付き代入に使用できます。

  • :

      import numpy as np
      df['G'] = np.where(df['A'] > 2, 'High', 'Low')
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G
      # 0  1  4   5   Odd   25  17   Low
      # 1  2  5   7  Even   49  29   Low
      # 2  3  6   9   Odd   81  45  High

8. 外部関数を使用して値を代入します

  • 行または列に適用されるカスタム関数に基づいて列に値を割り当てます。

  • :

      def custom_function(row):
          return row['A'] * row['B']
    
      df['H'] = df.apply(custom_function, axis=1)
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G   H
      # 0  1  4   5   Odd   25  17   Low   4
      # 1  2  5   7  Even   49  29   Low  10
      # 2  3  6   9   Odd   81  45  High  18

9. チェーン操作

  • コードをより簡潔にするために、複数の操作を連鎖させることができます。

  • :

      df['I'] = df['A'].add(df['B']).mul(df['C'])
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G   H    I
      # 0  1  4   5   Odd   25  17   Low   4   25
      # 1  2  5   7  Even   49  29   Low  10   49
      # 2  3  6   9   Odd   81  45  High  18   81

10. 複数の列を一度に割り当てます

  • assign() を使用して、1 回の呼び出しで複数の列を作成または変更します。

  • :

      df = df.assign(
          J=df['A'] + df['B'],
          K=lambda x: x['J'] * 2
      )
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G   H    I   J   K
      # 0  1  4   5   Odd   25  17   Low   4   25   5  10
      # 1  2  5   7  Even   49  29   Low  10   49   7  14
      # 2  3  6   9   Odd   81  45  High  18   81   9  18

専門家

11. 動的な列の割り当て

  • 外部入力に基づいて列名を動的に作成します。

  • :

      columns_to_add = ['L', 'M']
      for col in columns_to_add:
          df[col] = df['A'] + df['B']
      print(df)

12. 外部データ割り当てを使用する

  • 外部データフレームまたはディクショナリに基づいて列に値を割り当てます。

  • :

      mapping = {1: 'Low', 2: 'Medium', 3: 'High'}
      df['N'] = df['A'].map(mapping)
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G   H    I   J   K      N
      # 0  1  4   5   Odd   25  17   Low   4   25   5  10    Low
      # 1  2  5   7  Even   49  29   Low  10   49   7  14  Medium
      # 2  3  6   9   Odd   81  45  High  18   81   9  18   High

13. パフォーマンスの最適化:

  • 値を割り当てる場合、Pandas の組み込み関数 (apply、ベクトル化された操作) を使用すると、Python ループよりもパフォーマンスが向上します。

概要

df['column'] = expression 構文は Pandas の中核機能であり、幅広い用途があります。次のことが可能になります:

  • DataFrame 内の列を追加、変更、操作します。
  • 条件ベースのロジックや複数列の変換などの複雑な計算を実行します。
  • 操作を連鎖させ、新しい列を動的に生成します。

これにより、Pandas は強力なデータ操作および分析ライブラリになります。

以上がpandas の構文 `df[&#column&#] =expression` の説明の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python:コンパイラまたはインタープリター?Python:コンパイラまたはインタープリター?May 13, 2025 am 12:10 AM

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

ループvs whileループ用のpython:いつ使用するか?ループvs whileループ用のpython:いつ使用するか?May 13, 2025 am 12:07 AM

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

Pythonループ:最も一般的なエラーPythonループ:最も一般的なエラーMay 13, 2025 am 12:07 AM

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i

ループの場合、およびPythonのループ:それぞれの利点は何ですか?ループの場合、およびPythonのループ:それぞれの利点は何ですか?May 13, 2025 am 12:01 AM

forloopsareadvastountousforknowterations and sequences、offeringsimplicityandeadability;

Python:編集と解釈に深く掘り下げますPython:編集と解釈に深く掘り下げますMay 12, 2025 am 12:14 AM

pythonusesahybridmodelofcompilation andtertation:1)thepythoninterpretercompilessourcodeodeplatform-indopent bytecode.2)thepythonvirtualmachine(pvm)thenexecuteTesthisbytecode、balancingeaseoputhswithporformance。

Pythonは解釈されたものですか、それとも編集された言語であり、なぜそれが重要なのですか?Pythonは解釈されたものですか、それとも編集された言語であり、なぜそれが重要なのですか?May 12, 2025 am 12:09 AM

pythonisbothintersedand compiled.1)it'scompiledtobytecode forportabalityacrossplatforms.2)bytecodeisthenは解釈され、開発を許可します。

ループ対pythonのループの場合:説明されたキーの違いループ対pythonのループの場合:説明されたキーの違いMay 12, 2025 am 12:08 AM

loopsareideal whenyouwhenyouknumberofiterationsinadvance、foreleloopsarebetterforsituationsは、loopsaremoreedilaConditionismetを使用します

ループのために:実用的なガイドループのために:実用的なガイドMay 12, 2025 am 12:07 AM

henthenumber ofiterationsisknown advanceの場合、dopendonacondition.1)forloopsareideal foriterating over for -for -for -saredaverseversives likelistorarrays.2)whileopsaresupasiable forsaresutable forscenarioswheretheloopcontinupcontinuspificcond

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール