コーヒー買ってきて☕
*メモ:
- 私の投稿では、train2014 と captions_train2014.json、instances_train2014.json、および person_keypoints_train2014.json、val2014 と captions_val2014.json、instances_val2014.json および person_keypoints_val2014.json、および test2017 を使用した CocoDetection() について説明しています。 image_info_test2014.json、image_info_test2015.json、image_info_test-dev2015.json.
- 私の投稿では、train2017 と captions_train2017.json、instances_train2017.json、person_keypoints_train2017.json、val2017 と captions_val2017.json、instances_val2017.json と person_keypoints_val2017.json、および test2017 を使用した CocoDetection() について説明しています。 image_info_test2017.json および image_info_test-dev2017.json.
- 私の投稿では MS COCO について説明しています。
CocoDetection() は、以下に示すように MS COCO データセットを使用できます。 *これは、staff_train2017.json を使用した train2017、stuff_val2017.json を使用した val2017、stuff_train2017.json を使用したstuff_train2017_pixelmaps、stuff_val2017.jsonを使用したstuff_val2017_pixelmaps、panoptic_train2017.jsonを使用したpanoptic_train2017、およびpanoptic_val2017を対象としています。 panoptic_val2017.json と unlabeled2017 と image_info_unlabeled2017.json:
from torchvision.datasets import CocoDetection stf_train2017_data = CocoDetection( root="data/coco/imgs/train2017", annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json" ) stf_val2017_data = CocoDetection( root="data/coco/imgs/val2017", annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json" ) len(stf_train2017_data), len(stf_val2017_data) # (118287, 5000) # pms_stf_train2017_data = CocoDetection( # root="data/coco/anns/stuff_trainval2017/stuff_train2017_pixelmaps", # annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json" # ) # Error # pms_stf_val2017_data = CocoDetection( # root="data/coco/anns/stuff_trainval2017/stuff_val2017_pixelmaps", # annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json" # ) # Error # pan_train2017_data = CocoDetection( # root="data/coco/anns/panoptic_trainval2017/panoptic_train2017", # annFile="data/coco/anns/panoptic_trainval2017/panoptic_train2017.json" # ) # Error # pan_val2017_data = CocoDetection( # root="data/coco/anns/panoptic_trainval2017/panoptic_val2017", # annFile="data/coco/anns/panoptic_trainval2017/panoptic_val2017.json" # ) # Error unlabeled2017_data = CocoDetection( root="data/coco/imgs/unlabeled2017", annFile="data/coco/anns/unlabeled2017/image_info_unlabeled2017.json" ) len(unlabeled2017_data) # 123403 stf_train2017_data[2] # (<pil.image.image image mode="RGB" size="640x428">, # [{'segmentation': {'counts': 'W2a0S2Q1T7mNmHS1R7mN...0100000000', # 'size': [428, 640]}, 'area': 112666.0, 'iscrowd': 0, 'image_id': 30, # 'bbox': [0.0, 0.0, 640.0, 321.0], 'category_id': 119, 'id': 10000010}, # {'segmentation': ..., 'category_id': 124, 'id': 10000011}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 10000014}]) stf_train2017_data[47] # (<pil.image.image image mode="RGB" size="640x427">, # [{'segmentation': {'counts': '\\j1h0[<a0g2n001o0...00001o0000 ... stf_train2017_data image mode="RGB" size="480x640">, # [{'segmentation': {'counts': '0[9e:1O000000O100000...O5mc0F^Zj7', # 'size': [640, 480]}, 'area': 20503.0, 'iscrowd': 0, 'image_id': 370, # 'bbox': [0.0, 0.0, 79.0, 316.0], 'category_id': 102, 'id': 10000383}, # {'segmentation': ..., 'category_id': 105, 'id': 10000384}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 10000389}]) stf_val2017_data[2] # (<pil.image.image image mode="RGB" size="640x483">, # [{'segmentation': {'counts': '\9g5]9O1O1O;EU1kNU1...VMKQ?NY`d3', # 'size': [483, 640]}, 'area': 5104.0, 'iscrowd': 0, 'image_id': 632, # 'bbox': [0.0, 300.0, 392.0, 183.0], 'category_id': 93, 'id': 20000017}, # {'segmentation': ..., 'category_id': 128, 'id': 20000018}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 20000020}]) stf_val2017_data[47] # (<pil.image.image image mode="RGB" size="640x480">, # [{'segmentation': {'counts': '[da7T1X>D3M2J5M4M4LoQg1', # 'size': [480, 640]}, 'area': 122.0, 'iscrowd': 0, 'image_id': 5001, # 'bbox': [515.0, 235.0, 7.0, 36.0], 'category_id': 104, 'id': 20000247}, # {'segmentation': ..., 'category_id': 105, 'id': 20000248}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 20000256}]) stf_val2017_data[64] # (<pil.image.image image mode="RGB" size="640x483">, # [{'segmentation': {'counts': 'UN020mN]B2e>N1O...Mb@N^?2hd2', # 'size': [500, 375]}, 'area': 2404.0, 'iscrowd': 0, 'image_id': 6763, # 'bbox': [0.0, 235.0, 369.0, 237.0], 'category_id': 105, 'id': 20000356}, # {'segmentation': ..., 'category_id': 123, 'id': 20000357}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 20000362}]) unlabeled2017_data[2] # (<pil.image.image image mode="RGB" size="640x427">, []) unlabeled2017_data[47] # (<pil.image.image image mode="RGB" size="428x640">, []) unlabeled2017_data[64] # (<pil.image.image image mode="RGB" size="640x480">, []) import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import numpy as np from pycocotools import mask # `show_images1()` doesn't work very well for the images with # segmentations so for it, use `show_images2()` which # more uses the original coco functions. def show_images1(data, ims, main_title=None): file = data.root.split('/')[-1] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8)) fig.suptitle(t=main_title, y=0.9, fontsize=14) for i, axis in zip(ims, axes.ravel()): if data[i][1] and "segmentation" in data[i][1][0]: im, anns = data[i] axis.imshow(X=im) axis.set_title(label=anns[0]["image_id"]) ec = ['g', 'r', 'c', 'm', 'y', 'w'] ec_index = 0 for ann in anns: seg = ann['segmentation'] compressed_rld = mask.decode(rleObjs=seg) y_plts, x_plts = np.nonzero(a=np.squeeze(a=compressed_rld)) axis.plot(x_plts, y_plts, alpha=0.4) x, y, w, h = ann['bbox'] rect = Rectangle(xy=(x, y), width=w, height=h, linewidth=3, edgecolor=ec[ec_index], facecolor='none', zorder=2) ec_index += 1 if ec_index == len(ec)-1: ec_index = 0 axis.add_patch(p=rect) elif not data[i][1]: im, _ = data[i] axis.imshow(X=im) fig.tight_layout() plt.show() ims = (2, 47, 64) show_images1(data=stf_train2017_data, ims=ims, main_title="stf_train2017_data") show_images1(data=stf_val2017_data, ims=ims, main_title="stf_val2017_data") show_images1(data=unlabeled2017_data, ims=ims, main_title="unlabeled2017_data") def show_images2(data, index, main_title=None): img_set = data[index] img, img_anns = img_set if img_anns and "segmentation" in img_anns[0]: img_id = img_anns[0]['image_id'] coco = data.coco def show_image(imgIds, areaRng=[], iscrowd=None, draw_bbox=False): plt.figure(figsize=(11, 8)) plt.imshow(X=img) plt.suptitle(t=main_title, y=1, fontsize=14) plt.title(label=img_id, fontsize=14) anns_ids = coco.getAnnIds(imgIds=img_id, areaRng=areaRng, iscrowd=iscrowd) anns = coco.loadAnns(ids=anns_ids) coco.showAnns(anns=anns, draw_bbox=draw_bbox) plt.show() show_image(imgIds=img_id, draw_bbox=True) show_image(imgIds=img_id, draw_bbox=False) show_image(imgIds=img_id, iscrowd=False, draw_bbox=True) show_image(imgIds=img_id, areaRng=[0, 5000], draw_bbox=True) elif not img_anns: plt.figure(figsize=(11, 8)) plt.imshow(X=img) plt.suptitle(t=main_title, y=1, fontsize=14) plt.show() show_images2(data=stf_val2017_data, index=47, main_title="stf_train2017_data") </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></a0g2n001o0...00001o0000></pil.image.image></pil.image.image>
show_images1():
show_images2():
以上がPyTorch の CocoDetection (3)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

toAppendElementStoapyThonList、usetheappend()methodforsingleelements、extend()formultipleElements、andinsert()forspecificopsitions.1)useappend()foraddingoneElementatheend.2)useextend()toaddmultipleelementseffictience.3)

To CreateapythonList、usesquareBrackets []およびSeparateItemswithcommas.1)listsaredynamicandcanholdmixdatatypes.2)useappend()、remaid()、andslicingformanipulation.3)listcompreheNsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsientionforcreating.4)

金融、科学研究、医療、およびAIの分野では、数値データを効率的に保存および処理することが重要です。 1)財務では、メモリマッピングされたファイルとnumpyライブラリを使用すると、データ処理速度が大幅に向上する可能性があります。 2)科学研究の分野では、HDF5ファイルはデータストレージと取得用に最適化されています。 3)医療では、インデックス作成やパーティション化などのデータベース最適化テクノロジーがデータのパフォーマンスを向上させます。 4)AIでは、データシャーディングと分散トレーニングがモデルトレーニングを加速します。システムのパフォーマンスとスケーラビリティは、適切なツールとテクノロジーを選択し、ストレージと処理速度の間のトレードオフを検討することにより、大幅に改善できます。

pythonarraysarasarecreatedusingthearraymodule、notbuilt-inlikelists.1)importthearraymodule.2)specifytheTypecode、emg。、 'i'forintegers.3)Arraysofferbettermemoreefficiency forhomogeneousdatabutlasefutablethanlists。

Shebangラインに加えて、Pythonインタープリターを指定するには多くの方法があります。1。コマンドラインから直接Pythonコマンドを使用します。 2。バッチファイルまたはシェルスクリプトを使用します。 3. makeやcmakeなどのビルドツールを使用します。 4. Invokeなどのタスクランナーを使用します。各方法には利点と短所があり、プロジェクトのニーズに合った方法を選択することが重要です。

forhandlinglaredataSetsinpython、usenumpyArrays forbetterperformance.1)numpyarraysarememory-effictientandfasterfornumericaloperations.2)nusinnnnedarytypeconversions.3)レバレッジベクトル化は、測定済みのマネージメーシェイメージーウェイズデイタイです

inpython、listsusedynamicmemoryallocation with allocation、whilenumpyArraysalocatefixedmemory.1)listsallocatemorememorythanneededededinitivative.2)numpyArrayasallocateexactmemoryforements、rededicablebutlessflexibilityを提供します。

inpython、youcanspecthedatatypeyfelemeremodelernspant.1)usenpynernrump.1)usenpynerp.dloatp.ploatm64、フォーマーpreciscontrolatatypes。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

SublimeText3 中国語版
中国語版、とても使いやすい

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません
