このブログ投稿では、遺伝的アルゴリズム (GA) を使用して、障害物を回避しながらターゲットに向かって移動するドットをシミュレートする魅力的なプロジェクトについて詳しく説明します。 GA は自然選択を模倣し、ターゲットへの近さに基づいてドットの母集団を繰り返し改善します。
遺伝的アルゴリズムの実装:
GA は次の標準的な手順に従います:
- 初期化: ドットの初期集団をランダムに生成します。
- 評価: フィットネス関数は、ターゲットからの距離に基づいて各ドットのパフォーマンスを評価します。
- 選択: 最も適したドットが次世代の親として選択されます。
- クロスオーバー: 2 つの親からの遺伝情報 (移動方向) が結合されて子孫が作成されます。 (注: このプロジェクトでは、簡単にするために最初はレプリケーションを使用します。クロスオーバーは後で追加されます。)
- 突然変異: 多様性を維持するために、子孫の移動方向に小さなランダムな変化が導入されます。
- 置換: 前の世代が子孫に置き換えられます。
- エリート主義: 前世代の最高のパフォーマンスのドットは、次の世代にも保存されます。
- 反復: ステップ 2 ~ 7 が、指定された世代数だけ繰り返されます。
シミュレーションの概要:
シミュレーションは、赤い四角のターゲットに到達するために進化するドットの集団を視覚化します。各ドットの動きは、その「遺伝子」(一連の動きの方向)によって決まります。 選択、突然変異、複製を通じて集団は適応し、黒い長方形の障害物を回避しながらターゲットに到達する能力を向上させます。
主要なシミュレーション コンポーネント:
- ドット: 移動方向 (染色体) とターゲットの近接性に基づく適応度スコアを持つエージェント。
- フィットネス関数: ターゲットまでの距離に基づいてフィットネスを計算し、より短いパスに報酬を与えます。
- 人口: 世代を超えて進化する点の集合。
- 遺伝的アルゴリズム: 進化のプロセスを推進し、適合する個体を選択し、バリエーションを導入します。
- 障害物: ドットのナビゲーションに挑戦する黒い四角形。
- 目標: 点が到達することを目指す赤い四角のターゲット。
プロジェクトのセットアップ (Python と Pygame):
プロジェクトは視覚化に Pygame を使用します。 主要なグローバル変数は、シミュレーションのパラメーター (集団サイズ、突然変異率など) を制御します。 Dot
クラスは個々のドットを表し、その位置、動き、フィットネスを管理します。
初期シミュレーション (単一ドット):
最初のコードは、画面の境界を出るまでランダムに移動する単一のドットをシミュレートします。これは、母集団と GA を導入する前の基礎的なステップとして機能します。
人口シミュレーション:
Population
クラスはドットのグループを管理します。 update
メソッドはドットを移動し、障害物との衝突をチェックします。 シミュレーションでは、同時に移動する複数のドットが表示されるようになりました。
障害物と目標の追加:
Obstacle
クラスと Goal
クラスは、それぞれ障害物とターゲットを表すために導入されています。 衝突検出が実装されており、衝突時にドットが「消滅」します。シミュレーションには、赤いターゲット正方形と黒い長方形の障害物が含まれています。
遺伝的アルゴリズムの実装 (レプリケーション):
get_fitness
クラスの Dot
メソッドは、適応度を計算します。 Population
クラスは、選択、レプリケーション (最初はクロスオーバーではなく)、突然変異、エリート主義を実装するための generate_next_generation
メソッドと select_best_dots
メソッドを取得します。シミュレーションでは、人口が世代を超えて進化することが示されています。
今後の機能強化:
今後のブログ投稿では次の内容を取り上げます:
- エリート ドットを視覚的に区別します。
- より複雑な障害物を追加します。
- より洗練された子孫生成のためのクロスオーバーの実装。
- ドットがターゲットに到達すると「到達」メッセージを表示します。
完全なコード (この時点まで) は GitHub で入手できます。 コードを試して、結果を共有してください。 AICraftsLab Discord コミュニティに参加して、他の AI 愛好家とつながりましょう。
以上が遺伝的アルゴリズムを使用したドット シミュレーション - パート 1の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

pythonisbothcompiledinterted.whenyourunapythonscript、itisfirstcompiledintobytecode、これはdenepythonvirtualmachine(pvm).thishybridapproaChallowsforplatform-platform-denodent-codebutcututicut。

Pythonは厳密に行ごとの実行ではありませんが、最適化され、インタープレーターメカニズムに基づいて条件付き実行です。インタープリターは、コードをPVMによって実行されるBytecodeに変換し、定数式または最適化ループを事前促進する場合があります。これらのメカニズムを理解することで、コードを最適化し、効率を向上させることができます。

Pythonに2つのリストを接続する多くの方法があります。1。オペレーターを使用しますが、これはシンプルですが、大きなリストでは非効率的です。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3。=演算子を使用します。これは効率的で読み取り可能です。 4。itertools.chain関数を使用します。これはメモリ効率が高いが、追加のインポートが必要です。 5。リストの解析を使用します。これはエレガントですが、複雑すぎる場合があります。選択方法は、コードのコンテキストと要件に基づいている必要があります。

Pythonリストをマージするには多くの方法があります。1。オペレーターを使用します。オペレーターは、シンプルですが、大きなリストではメモリ効率的ではありません。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3. Itertools.chainを使用します。これは、大規模なデータセットに適しています。 4.使用 *オペレーター、1つのコードで小規模から中型のリストをマージします。 5. numpy.concatenateを使用します。これは、パフォーマンス要件の高い大規模なデータセットとシナリオに適しています。 6.小さなリストに適したが、非効率的な追加方法を使用します。メソッドを選択するときは、リストのサイズとアプリケーションのシナリオを考慮する必要があります。

compiledlanguagesOfferspeedandsecurity、foredlanguagesprovideeaseofuseandportability.1)compiledlanguageslikec arefasterandsecurebuthavelOnderdevelopmentsplat dependency.2)

Pythonでは、forループは反復可能なオブジェクトを通過するために使用され、条件が満たされたときに操作を繰り返し実行するためにしばらくループが使用されます。 1)ループの例:リストを通過し、要素を印刷します。 2)ループの例:正しいと推測するまで、数値ゲームを推測します。マスタリングサイクルの原則と最適化手法は、コードの効率と信頼性を向上させることができます。

リストを文字列に連結するには、PythonのJoin()メソッドを使用して最良の選択です。 1)join()メソッドを使用して、 '' .join(my_list)などのリスト要素を文字列に連結します。 2)数字を含むリストの場合、連結する前にマップ(str、数字)を文字列に変換します。 3) '、'などの複雑なフォーマットに発電機式を使用できます。 4)混合データ型を処理するときは、MAP(STR、Mixed_List)を使用して、すべての要素を文字列に変換できるようにします。 5)大規模なリストには、 '' .join(lage_li)を使用します

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

WebStorm Mac版
便利なJavaScript開発ツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

ドリームウィーバー CS6
ビジュアル Web 開発ツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。
