検索
ホームページバックエンド開発Python チュートリアル「cv::inRange」を使用して OpenCV で色検出に最適な HSV 境界を効果的に選択する方法

How to Effectively Choose Optimal HSV Boundaries for Color Detection in OpenCV using `cv::inRange`?

OpenCV の cv::inRange を使用した色検出のための最適な HSV 境界の選択

画像処理タスクでは、多くの場合、オブジェクトに基づいてオブジェクトを検出する必要があります。彼らの色について。この目的のために、OpenCV では cv::inRange 関数が一般的に使用され、指定された HSV カラー範囲内のピクセルを識別します。ただし、適切な HSV 境界を選択することは、特にさまざまなアプリケーションがさまざまな HSV スケールとカラー形式を使用する場合に困難になることがあります。

問題:

オレンジを検出するシナリオを考えてみましょう。コーヒー缶の蓋のイメージ。 gimp ツールを使用すると、蓋の中心の HSV 値は (22、59、100) であることがわかりました。ただし、HSV 範囲 (18、40、90) ~ (27、255、255) を適用すると、満足のいく検出結果が得られませんでした。

解決策 1: HSV スケールを調整する

この問題を解決するには、アプリケーションごとに異なる HSV スケールが使用されることを認識することが重要です。この場合、gimp は H: 0 ~ 360、S: 0 ~ 100、V: 0 ~ 100 スケールを使用しますが、OpenCV は H: 0 ~ 179、S: 0 ~ 255、V: 0 ~ 255 を使用します。 gimp から取得した色相値 (22) の場合、その半分 (11) を取得し、それに応じて範囲を調整する必要があります。これは、(5, 50, 50) - (15, 255, 255) の新しい HSV 範囲に変換されます。

解決策 2: BGR 形式に変換する

追加、OpenCV は RGB ではなく BGR カラー形式を使用することを考慮することが重要です。したがって、Python コードでは、cv::CV_RGB2HSV 変換を cv::CV_BGR2HSV に置き換える必要があります。

これらの変更を実装することで、検出アルゴリズムの結果が改善されるはずです。軽度の誤検出が依然として発生する可能性がありますが、最大の輪郭は蓋に対応するはずです。

OpenCV 2 による改良された Python コード:

import cv2

in_image = 'kaffee.png'
out_image = 'kaffee_out.png'
out_image_thr = 'kaffee_thr.png'

ORANGE_MIN = np.array([5, 50, 50], np.uint8)
ORANGE_MAX = np.array([15, 255, 255], np.uint8)

def test1():
    frame = cv2.imread(in_image)
    frameHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    frame_threshed = cv2.inRange(frameHSV, ORANGE_MIN, ORANGE_MAX)
    cv2.imwrite(out_image_thr, frame_threshed)

if __name__ == '__main__':
    test1()

強化された Python OpenCV 4 でのコード:

import cv2
import numpy as np

in_image = 'kaffee.png'
out_image = 'kaffee_out.png'
out_image_thr = 'kaffee_thr.png'

ORANGE_MIN = np.array([5, 50, 50], np.uint8)
ORANGE_MAX = np.array([15, 255, 255], np.uint8)

def test1():
    frame = cv2.imread(in_image)
    frameHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    frame_threshed = cv2.inRange(frameHSV, ORANGE_MIN, ORANGE_MAX)
    cv2.imwrite(out_image_thr, frame_threshed)

if __name__ == '__main__':
    test1()

の使用これらの更新されたコードにより、コーヒー缶の画像上のオレンジ色の蓋を正確に検出することが可能になります。

以上が「cv::inRange」を使用して OpenCV で色検出に最適な HSV 境界を効果的に選択する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonの融合リスト:適切な方法を選択しますPythonの融合リスト:適切な方法を選択しますMay 14, 2025 am 12:11 AM

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3の2つのリストを連結する方法は?Python 3の2つのリストを連結する方法は?May 14, 2025 am 12:09 AM

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Python Concatenateリスト文字列Python Concatenateリスト文字列May 14, 2025 am 12:08 AM

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

Pythonの実行、それは何ですか?Pythonの実行、それは何ですか?May 14, 2025 am 12:06 AM

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Python:重要な機能は何ですかPython:重要な機能は何ですかMay 14, 2025 am 12:02 AM

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Python:コンパイラまたはインタープリター?Python:コンパイラまたはインタープリター?May 13, 2025 am 12:10 AM

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

ループvs whileループ用のpython:いつ使用するか?ループvs whileループ用のpython:いつ使用するか?May 13, 2025 am 12:07 AM

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

Pythonループ:最も一般的なエラーPythonループ:最も一般的なエラーMay 13, 2025 am 12:07 AM

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい