静的クラスでの重複したランダム値の回避
静的コンテキストで Random クラスを使用すると、重複したランダム値が発生する可能性があります。これは、乱数発生器のデフォルトのシードが一定のままであり、結果としてシーケンスが予測可能になるために発生します。この問題を防ぐには、個別のシードを使用して Random オブジェクトを初期化することが不可欠です。
解決策: Guid を使用したランダム シードの初期化
ランダム性を確保するための一般的な解決策は次のとおりです。 Random クラスにランダムに生成されたハッシュ コードをシードします。 GUID:
Random rand = new Random(Guid.NewGuid().GetHashCode());
利点の理解:
- ユニーク シード: Guid のハッシュ コードは、ユニークで、ランダムの多様なシードを作成しますobject.
- ランダム性の向上: このシード生成メソッドは、生成される値のランダム性を強化し、ループ内での重複値の発生を効果的に排除します。
追加の考慮事項:
この手法は、重複するランダム値の問題を効果的に解決します。
- パフォーマンスに関する考慮事項: GUID の生成とハッシュは計算コストがかかる可能性があります。潜在的なパフォーマンスへの影響を評価するには、アプリケーションのプロファイリングを検討してください。
- シードの一貫性: Random クラスの複数のインスタンス間で同じシードを使用すると、同じシーケンスのランダム値が生成されます。
以上がC# で静的ランダム クラスを使用するときに乱数の重複を避けるにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Cは死んでいませんが、多くの重要な領域で栄えています。1)ゲーム開発、2)システムプログラミング、3)高性能コンピューティング、4)ブラウザとネットワークアプリケーション、Cは依然として主流の選択であり、その強力な活力とアプリケーションのシナリオを示しています。

C#とCの主な違いは、構文、メモリ管理、パフォーマンスです。1)C#構文は最新であり、LambdaとLinqをサポートし、CはC機能を保持し、テンプレートをサポートします。 2)C#はメモリを自動的に管理し、Cは手動で管理する必要があります。 3)CパフォーマンスはC#よりも優れていますが、C#パフォーマンスも最適化されています。

tinyxml、pugixml、またはlibxml2ライブラリを使用して、CでXMLデータを処理できます。1)XMLファイルを解析する:DOMまたはSAXメソッドを使用し、DOMは小さなファイルに適しており、SAXは大きなファイルに適しています。 2)XMLファイルを生成:データ構造をXML形式に変換し、ファイルに書き込みます。これらの手順を通じて、XMLデータを効果的に管理および操作できます。

CのXMLデータ構造を使用すると、TinyXMLまたはPUGIXMLライブラリを使用できます。 1)PUGIXMLライブラリを使用して、XMLファイルを解析して生成します。 2)本情報などの複雑なネストされたXML要素を処理します。 3)XML処理コードを最適化し、効率的なライブラリとストリーミング解析を使用することをお勧めします。これらの手順を通じて、XMLデータを効率的に処理できます。

Cは、低レベルのメモリ管理と効率的な実行機能により、ゲーム開発、金融取引システム、組み込みシステムに不可欠であるため、パフォーマンスの最適化を支配しています。具体的には、次のように現れます。1)ゲーム開発では、Cの低レベルのメモリ管理と効率的な実行機能により、ゲームエンジン開発に適した言語になります。 2)金融取引システムでは、Cのパフォーマンスの利点は、非常に低いレイテンシと高スループットを保証します。 3)組み込みシステムでは、Cの低レベルのメモリ管理と効率的な実行機能により、リソースに制約のある環境で非常に人気があります。

C XMLフレームワークの選択は、プロジェクトの要件に基づいている必要があります。 1)TinyXMLは、リソースに制約のある環境に適しています。2)PUGIXMLは高性能要件に適しています。

C#は、開発効率とタイプの安全性を必要とするプロジェクトに適していますが、Cは高性能とハードウェア制御を必要とするプロジェクトに適しています。 1)C#は、エンタープライズアプリケーションやWindows開発に適したGarbage CollectionとLINQを提供します。 2)Cは、その高性能と根本的な制御で知られており、ゲームやシステムのプログラミングで広く使用されています。

Cコードの最適化は、次の戦略を通じて実現できます。1。最適化のためにメモリを手動で管理する。 2。コンパイラ最適化ルールに準拠したコードを書きます。 3.適切なアルゴリズムとデータ構造を選択します。 4.インライン関数を使用して、コールオーバーヘッドを削減します。 5.コンパイル時に最適化するために、テンプレートメタプログラムを適用します。 6.不要なコピーを避け、移動セマンティクスと参照パラメーターを使用します。 7. constを正しく使用して、コンパイラの最適化を支援します。 8。std :: vectorなどの適切なデータ構造を選択します。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ドリームウィーバー CS6
ビジュアル Web 開発ツール
