コーヒー買ってきて☕
*私の投稿では MS COCO について説明しています。
CocoDetection() は、以下に示すように MS COCO データセットを使用できます。
*メモ:
- 最初の引数は root(Required-Type:str または pathlib.Path) です。
*メモ:
- これは画像へのパスです。
- 絶対パスまたは相対パスが可能です。
- 2 番目の引数は annFile(Required-Type:str または pathlib.Path) です。
*メモ:
- これは注釈へのパスです。
- 絶対パスまたは相対パスが可能です。
- 3 番目の引数は、transform(Optional-Default:None-Type:callable) です。
- 4 番目の引数は target_transform(Optional-Default:None-Type:callable) です。
- 5 番目の引数は、transforms(Optional-Default:None-Type:callable) です。
from torchvision.datasets import CocoDetection cap_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json" ) cap_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json", transform=None, target_transform=None, transforms=None ) ins_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/instances_train2014.json" ) pk_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json" ) len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data) # (82783, 82783, 82783) cap_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/captions_val2014.json" ) ins_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/instances_val2014.json" ) pk_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json" ) len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data) # (40504, 40504, 40504) test2014_data = CocoDetection( root="data/coco/imgs/test2014", annFile="data/coco/anns/test2014/test2014.json" ) test2015_data = CocoDetection( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/test2015.json" ) testdev2015_data = CocoDetection( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/test-dev2015.json" ) len(test2014_data), len(test2015_data), len(testdev2015_data) # (40775, 81434, 20288) cap_train2014_data # Dataset CocoDetection # Number of datapoints: 82783 # Root location: data/coco/imgs/train2014 cap_train2014_data.root # 'data/coco/imgs/train2014' print(cap_train2014_data.transform) # None print(cap_train2014_data.target_transform) # None print(cap_train2014_data.transforms) # None cap_train2014_data[0] # (<pil.image.image image mode="RGB" size="640x480">, # [{'image_id': 9, 'id': 661611, # 'caption': 'Closeup of bins of food that include broccoli and bread.'}, # {'image_id': 9, 'id': 661977, # 'caption': 'A meal is presented in brightly colored plastic trays.'}, # {'image_id': 9, 'id': 663627, # 'caption': 'there are containers filled with different kinds of foods'}, # {'image_id': 9, 'id': 666765, # 'caption': 'Colorful dishes holding meat, vegetables, fruit, and bread.'}, # {'image_id': 9, 'id': 667602, # 'caption': 'A bunch of trays that have different food.'}]) cap_train2014_data[1] # (<pil.image.image image mode="RGB" size="640x426">, # [{'image_id': 25, 'id': 122312, # 'caption': 'A giraffe eating food from the top of the tree.'}, # {'image_id': 25, 'id': 127076, # 'caption': 'A giraffe standing up nearby a tree '}, # {'image_id': 25, 'id': 127238, # 'caption': 'A giraffe mother with its baby in the forest.'}, # {'image_id': 25, 'id': 133058, # 'caption': 'Two giraffes standing in a tree filled area.'}, # {'image_id': 25, 'id': 133676, # 'caption': 'A giraffe standing next to a forest filled with trees.'}]) cap_train2014_data[2] # (<pil.image.image image mode="RGB" size="640x428">, # [{'image_id': 30, 'id': 695774, # 'caption': 'A flower vase is sitting on a porch stand.'}, # {'image_id': 30, 'id': 696557, # 'caption': 'White vase with different colored flowers sitting inside of it. '}, # {'image_id': 30, 'id': 699041, # 'caption': 'a white vase with many flowers on a stage'}, # {'image_id': 30, 'id': 701216, # 'caption': 'A white vase filled with different colored flowers.'}, # {'image_id': 30, 'id': 702428, # 'caption': 'A vase with red and white flowers outside on a sunny day.'}]) ins_train2014_data[0] # (<pil.image.image image mode="RGB" size="640x480">, # [{'segmentation': [[500.49, 473.53, 599.73, ..., 20.49, 473.53]], # 'area': 120057.13925, 'iscrowd': 0, 'image_id': 9, # 'bbox': [1.08, 187.69, 611.59, 285.84], 'category_id': 51, # 'id': 1038967}, # {'segmentation': ..., 'category_id': 51, 'id': 1039564}, # ..., # {'segmentation': ..., 'category_id': 55, 'id': 1914001}]) ins_train2014_data[1] # (<pil.image.image image mode="RGB" size="640x426">, # [{'segmentation': [[437.52, 353.33, 437.87, ..., 437.87, 357.19]], # 'area': 19686.597949999996, 'iscrowd': 0, 'image_id': 25, # 'bbox': [385.53, 60.03, 214.97, 297.16], 'category_id': 25, # 'id': 598548}, # {'segmentation': [[99.26, 405.72, 133.57, ..., 97.77, 406.46]], # 'area': 2785.8475500000004, 'iscrowd': 0, 'image_id': 25, # 'bbox': [53.01, 356.49, 132.03, 55.19], 'category_id': 25, # 'id': 599491}]) ins_train2014_data[2] # (<pil.image.image image mode="RGB" size="640x428">, # [{'segmentation': [[267.38, 330.14, 281.81, ..., 269.3, 329.18]], # 'area': 47675.66289999999, 'iscrowd': 0, 'image_id': 30, # 'bbox': [204.86, 31.02, 254.88, 324.12], 'category_id': 64, # 'id': 291613}, # {'segmentation': [[394.34, 155.81, 403.96, ..., 393.38, 157.73]], # 'area': 16202.798250000003, 'iscrowd': 0, 'image_id': 30, # 'bbox': [237.56, 155.81, 166.4, 195.25], 'category_id': 86, # 'id': 1155486}]) pk_train2014_data[0] # (<pil.image.image image mode="RGB" size="640x480">, []) pk_train2014_data[1] # (<pil.image.image image mode="RGB" size="640x426">, []) pk_train2014_data[2] # (<pil.image.image image mode="RGB" size="640x428">, []) cap_val2014_data[0] # (<pil.image.image image mode="RGB" size="640x478">, # [{'image_id': 42, 'id': 641613, # 'caption': 'This wire metal rack holds several pairs of shoes and sandals'}, # {'image_id': 42, 'id': 645309, # 'caption': 'A dog sleeping on a show rack in the shoes.'}, # {'image_id': 42, 'id': 650217, # 'caption': 'Various slides and other footwear rest in a metal basket outdoors.'}, # {'image_id': 42, # 'id': 650868, # 'caption': 'A small dog is curled up on top of the shoes'}, # {'image_id': 42, # 'id': 652383, # 'caption': 'a shoe rack with some shoes and a dog sleeping on them'}]) cap_val2014_data[1] # (<pil.image.image image mode="RGB" size="565x640">, # [{'image_id': 73, 'id': 593422, # 'caption': 'A motorcycle parked in a parking space next to another motorcycle.'}, # {'image_id': 73, 'id': 746071, # 'caption': 'An old motorcycle parked beside other motorcycles with a brown leather seat.'}, # {'image_id': 73, 'id': 746170, # 'caption': 'Motorcycle parked in the parking lot of asphalt.'}, # {'image_id': 73, 'id': 746914, # 'caption': 'A close up view of a motorized bicycle, sitting in a rack. '}, # {'image_id': 73, 'id': 748185, # 'caption': 'The back tire of an old style motorcycle is resting in a metal stand. '}]) cap_val2014_data[2] # (<pil.image.image image mode="RGB" size="640x426">, # [{'image_id': 74, 'id': 145996, # 'caption': 'A picture of a dog laying on the ground.'}, # {'image_id': 74, 'id': 146710, # 'caption': 'Dog snoozing by a bike on the edge of a cobblestone street'}, # {'image_id': 74, 'id': 149398, # 'caption': 'The white dog lays next to the bicycle on the sidewalk.'}, # {'image_id': 74, 'id': 149638, # 'caption': 'a white dog is sleeping on a street and a bicycle'}, # {'image_id': 74, 'id': 150181, # 'caption': 'A puppy rests on the street next to a bicycle.'}]) ins_val2014_data[0] # (<pil.image.image image mode="RGB" size="640x478">, # [{'segmentation': [[382.48, 268.63, 330.24, ..., 394.09, 264.76]], # 'area': 53481.5118, 'iscrowd': 0, 'image_id': 42, # 'bbox': [214.15, 41.29, 348.26, 243.78], 'category_id': 18, # 'id': 1817255}]) ins_val2014_data[1] # (<pil.image.image image mode="RGB" size="565x640">, # [{'segmentation': [[134.36, 145.55, 117.02, ..., 138.69, 141.22]], # 'area': 172022.43864999997, 'iscrowd': 0, 'image_id': 73, # 'bbox': [13.0, 22.75, 535.98, 609.67], 'category_id': 4, # 'id': 246920}, # {'segmentation': [[202.28, 4.97, 210.57, 26.53, ..., 192.33, 3.32]], # 'area': 52666.3402, 'iscrowd': 0, 'image_id': 73, # 'bbox': [1.66, 3.32, 268.6, 271.91], 'category_id': 4, # 'id': 2047387}]) ins_val2014_data[2] # (<pil.image.image image mode="RGB" size="640x426">, # [{'segmentation': [[321.02, 321.0, 314.25, ..., 320.57, 322.86]], # 'area': 18234.62355, 'iscrowd': 0, 'image_id': 74, # 'bbox': [61.87, 276.25, 296.42, 103.18], 'category_id': 18, # 'id': 1774}, # {'segmentation': ..., 'category_id': 2, 'id': 128367}, # ... # {'segmentation': ..., 'category_id': 1, 'id': 1751664}]) pk_val2014_data[0] # (<pil.image.image image mode="RGB" size="640x478">, []) pk_val2014_data[1] # (<pil.image.image image mode="RGB" size="565x640">, []) pk_val2014_data[2] # (<pil.image.image image mode="RGB" size="640x426">, # [{'segmentation': [[301.32, 93.96, 305.72, ..., 299.67, 94.51]], # 'num_keypoints': 0, 'area': 638.7158, 'iscrowd': 0, # 'keypoints': [0, 0, 0, 0, ..., 0, 0], 'image_id': 74, # 'bbox': [295.55, 93.96, 18.42, 58.83], 'category_id': 1, # 'id': 195946}, # {'segmentation': ..., 'category_id': 1, 'id': 253933}, # ... # {'segmentation': ..., 'category_id': 1, 'id': 1751664}]) test2014_data[0] # (<pil.image.image image mode="RGB" size="640x480">, []) test2014_data[1] # (<pil.image.image image mode="RGB" size="480x640">, []) test2014_data[2] # (<pil.image.image image mode="RGB" size="480x640">, []) test2015_data[0] # (<pil.image.image image mode="RGB" size="640x480">, []) test2015_data[1] # (<pil.image.image image mode="RGB" size="480x640">, []) test2015_data[2] # (<pil.image.image image mode="RGB" size="480x640">, []) testdev2015_data[0] # (<pil.image.image image mode="RGB" size="640x480">, []) testdev2015_data[1] # (<pil.image.image image mode="RGB" size="480x640">, []) testdev2015_data[2] # (<pil.image.image image mode="RGB" size="640x427">, []) import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import torch def show_images(data, main_title=None): file = data.root.split('/')[-1] if data[0][1] and "caption" in data[0][1][0]: if file == "train2014": plt.figure(figsize=(14, 5)) plt.suptitle(t=main_title, y=0.9, fontsize=14) x_axis = 0.02 x_axis_incr = 0.325 fs = 10.5 elif file == "val2014": plt.figure(figsize=(14, 6.5)) plt.suptitle(t=main_title, y=0.94, fontsize=14) x_axis = 0.01 x_axis_incr = 0.32 fs = 9.4 for i, (im, ann) in zip(range(1, 4), data): plt.subplot(1, 3, i) plt.imshow(X=im) plt.title(label=ann[0]["image_id"]) y_axis = 0.0 for j in range(0, 5): plt.figtext(x=x_axis, y=y_axis, fontsize=fs, s=f'{ann[j]["id"]}:\n{ann[j]["caption"]}') if file == "train2014": y_axis -= 0.1 elif file == "val2014": y_axis -= 0.07 x_axis += x_axis_incr if i == 2 and file == "val2014": x_axis += 0.06 plt.tight_layout() plt.show() elif data[0][1] and "segmentation" in data[0][1][0]: if file == "train2014": fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 4)) elif file == "val2014": fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 5)) fig.suptitle(t=main_title, y=1.0, fontsize=14) for (im, anns), axis in zip(data, axes.ravel()): for ann in anns: for seg in ann['segmentation']: seg_tsors = torch.tensor(seg).split(2) seg_lists = [seg_tsor.tolist() for seg_tsor in seg_tsors] poly = Polygon(xy=seg_lists, facecolor="lightgreen", alpha=0.7) axis.add_patch(p=poly) px = [] py = [] for j, v in enumerate(seg): if j%2 == 0: px.append(v) else: py.append(v) axis.plot(px, py, color='yellow') x, y, w, h = ann['bbox'] rect = Rectangle(xy=(x, y), width=w, height=h, linewidth=3, edgecolor='r', facecolor='none', zorder=2) axis.add_patch(p=rect) axis.imshow(X=im) axis.set_title(label=anns[0]["image_id"]) fig.tight_layout() plt.show() elif not data[0][1]: if file == "train2014": plt.figure(figsize=(14, 5)) plt.suptitle(t=main_title, y=0.9, fontsize=14) elif file == "val2014": plt.figure(figsize=(14, 5)) plt.suptitle(t=main_title, y=1.05, fontsize=14) elif file == "test2014" or "test2015": plt.figure(figsize=(14, 8)) plt.suptitle(t=main_title, y=0.9, fontsize=14) for i, (im, _) in zip(range(1, 4), data): plt.subplot(1, 3, i) plt.imshow(X=im) plt.tight_layout() plt.show() show_images(data=cap_train2014_data, main_title="cap_train2014_data") show_images(data=ins_train2014_data, main_title="ins_train2014_data") show_images(data=pk_train2014_data, main_title="pk_train2014_data") show_images(data=cap_val2014_data, main_title="cap_val2014_data") show_images(data=ins_val2014_data, main_title="ins_val2014_data") show_images(data=pk_val2014_data, main_title="pk_val2014_data") show_images(data=test2014_data, main_title="test2014_data") show_images(data=test2015_data, main_title="test2015_data") show_images(data=testdev2015_data, main_title="testdev2015_data") </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image>
以上がPyTorch の CocoDetection (1)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。
