Pandas Datetime 列から年と月を抽出する
Pandas DataFrame の Datetime 列から年と月を抽出するのは簡単な作業です。上記の問題を再検討し、包括的な解決策を提供しましょう。
1 つのアプローチとして、Datetime 列をリサンプリングして、頻度ごと (この場合は月ごと) にグループ化することが含まれます。ただし、リサンプリング操作は DatetimeIndex または PeriodIndex オブジェクトに対してのみ有効であるため、提供されたコードではエラーが発生します。
もう 1 つの一般的な解決策は、Datetime 列の各要素にラムダ関数を適用し、文字列をスライスして抽出することです。年または月の部分だけ。ただし、このメソッドは、Datetime 列要素の Timestamp 型にスライス機能がないため失敗します。
代わりに、次の解決策をお勧めします。
df['year'] = pd.DatetimeIndex(df['ArrivalDate']).year df['month'] = pd.DatetimeIndex(df['ArrivalDate']).month
あるいは、この簡潔な解決策使用できる構文:
df['year'] = df['ArrivalDate'].dt.year df['month'] = df['ArrivalDate'].dt.month
この操作により、新しい '年' と '月' が作成されます。それぞれの列には、元の Datetime 列から抽出された年または月の値が含まれます。これで、抽出された年と月の情報を含む個別の列が作成され、さまざまな分析目的での作業が容易になりました。
以上がPandas Datetime 列から年と月を効率的に抽出するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

toAppendElementStoapyThonList、usetheappend()methodforsingleelements、extend()formultipleElements、andinsert()forspecificopsitions.1)useappend()foraddingoneElementatheend.2)useextend()toaddmultipleelementseffictience.3)

To CreateapythonList、usesquareBrackets []およびSeparateItemswithcommas.1)listsaredynamicandcanholdmixdatatypes.2)useappend()、remaid()、andslicingformanipulation.3)listcompreheNsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsientionforcreating.4)

金融、科学研究、医療、およびAIの分野では、数値データを効率的に保存および処理することが重要です。 1)財務では、メモリマッピングされたファイルとnumpyライブラリを使用すると、データ処理速度が大幅に向上する可能性があります。 2)科学研究の分野では、HDF5ファイルはデータストレージと取得用に最適化されています。 3)医療では、インデックス作成やパーティション化などのデータベース最適化テクノロジーがデータのパフォーマンスを向上させます。 4)AIでは、データシャーディングと分散トレーニングがモデルトレーニングを加速します。システムのパフォーマンスとスケーラビリティは、適切なツールとテクノロジーを選択し、ストレージと処理速度の間のトレードオフを検討することにより、大幅に改善できます。

pythonarraysarasarecreatedusingthearraymodule、notbuilt-inlikelists.1)importthearraymodule.2)specifytheTypecode、emg。、 'i'forintegers.3)Arraysofferbettermemoreefficiency forhomogeneousdatabutlasefutablethanlists。

Shebangラインに加えて、Pythonインタープリターを指定するには多くの方法があります。1。コマンドラインから直接Pythonコマンドを使用します。 2。バッチファイルまたはシェルスクリプトを使用します。 3. makeやcmakeなどのビルドツールを使用します。 4. Invokeなどのタスクランナーを使用します。各方法には利点と短所があり、プロジェクトのニーズに合った方法を選択することが重要です。

forhandlinglaredataSetsinpython、usenumpyArrays forbetterperformance.1)numpyarraysarememory-effictientandfasterfornumericaloperations.2)nusinnnnedarytypeconversions.3)レバレッジベクトル化は、測定済みのマネージメーシェイメージーウェイズデイタイです

inpython、listsusedynamicmemoryallocation with allocation、whilenumpyArraysalocatefixedmemory.1)listsallocatemorememorythanneededededinitivative.2)numpyArrayasallocateexactmemoryforements、rededicablebutlessflexibilityを提供します。

inpython、youcanspecthedatatypeyfelemeremodelernspant.1)usenpynernrump.1)usenpynerp.dloatp.ploatm64、フォーマーpreciscontrolatatypes。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 中国語版
中国語版、とても使いやすい

WebStorm Mac版
便利なJavaScript開発ツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン
