コーヒー買ってきて☕
*メモ:
- 私の投稿では add() について説明しています。
- 私の投稿では sub() について説明しています。
- 私の投稿では div() について説明しています。
- 私の投稿では、remaind() について説明しています。
- 私の投稿では fmod() について説明しています。
mul() は、0 個以上の要素またはスカラーの 0D または複数の D テンソル、または 0 個以上の要素とスカラーの 0D またはそれ以上の D テンソルのうちの 2 つを使用して乗算を行うことができます。以下に示すように、0 個以上の要素の 0D またはそれ以上の D テンソルを取得します。
*メモ:
- mul() はトーチまたはテンソルとともに使用できます。
- トーチ (タイプ: int、float、complex、または bool のテンソルまたはスカラー) を使用するか、テンソル (タイプ: int、float、complex または bool のテンソル) を使用する 1 番目の引数 (入力) (必須)。
- torch の 2 番目の引数、またはテンソルの 1 番目の引数は、other(必須タイプ: テンソルまたは int、float、complex、または bool のスカラー) です。
- torch(Optional-Default:None-Type:tensor) には out 引数があります:
*メモ:
- out= を使用する必要があります。
- 私の投稿では議論を説明しています。
- multiply() は mul() のエイリアスです。
import torch tensor1 = torch.tensor([9, 7, 6]) tensor2 = torch.tensor([[4, -4, 3], [-2, 5, -5]]) torch.mul(input=tensor1, other=tensor2) tensor1.mul(other=tensor2) # tensor([[36, -28, 18], [-18, 35, -30]]) torch.mul(input=9, other=tensor2) # tensor([[36, -36, 27], [-18, 45, -45]]) torch.mul(input=tensor1, other=4) # tensor([36, 28, 24]) torch.mul(input=9, other=4) # tensor(36) tensor1 = torch.tensor([9., 7., 6.]) tensor2 = torch.tensor([[4., -4., 3.], [-2., 5., -5.]]) torch.mul(input=tensor1, other=tensor2) # tensor([[36., -28., 18.], [-18., 35., -30.]]) torch.mul(input=9., other=tensor2) # tensor([[36., -36., 27.], [-18., 45., -45.]]) torch.mul(input=tensor1, other=4.) # tensor([36., 28., 24.]) torch.mul(input=9., other=4.) # tensor(36.) tensor1 = torch.tensor([9.+0.j, 7.+0.j, 6.+0.j]) tensor2 = torch.tensor([[4.+0.j, -4.+0.j, 3.+0.j], [-2.+0.j, 5.+0.j, -5.+0.j]]) torch.mul(input=tensor1, other=tensor2) # tensor([[36.+0.j, -28.+0.j, 18.+0.j], # [-18.+0.j, 35.+0.j, -30.+0.j]]) torch.mul(input=9.+0.j, other=tensor2) # tensor([[36.+0.j, -36.+0.j, 27.+0.j], # [-18.+0.j, 45.+0.j, -45.+0.j]]) torch.mul(input=tensor1, other=4.+0.j) # tensor([36.+0.j, 28.+0.j, 24.+0.j]) torch.mul(input=9.+0.j, other=4.+0.j) # tensor(36.+0.j) tensor1 = torch.tensor([True, False, True]) tensor2 = torch.tensor([[False, True, False], [True, False, True]]) torch.mul(input=tensor1, other=tensor2) # tensor([[False, False, False], # [True, False, True]]) torch.mul(input=True, other=tensor2) # tensor([[False, True, False], [True, False, True]]) torch.mul(input=tensor1, other=False) # tensor([False, False, False]) torch.mul(input=True, other=False) # tensor(False)
以上がPyTorch のマルの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i

forloopsareadvastountousforknowterations and sequences、offeringsimplicityandeadability;

pythonusesahybridmodelofcompilation andtertation:1)thepythoninterpretercompilessourcodeodeplatform-indopent bytecode.2)thepythonvirtualmachine(pvm)thenexecuteTesthisbytecode、balancingeaseoputhswithporformance。

pythonisbothintersedand compiled.1)it'scompiledtobytecode forportabalityacrossplatforms.2)bytecodeisthenは解釈され、開発を許可します。

loopsareideal whenyouwhenyouknumberofiterationsinadvance、foreleloopsarebetterforsituationsは、loopsaremoreedilaConditionismetを使用します

henthenumber ofiterationsisknown advanceの場合、dopendonacondition.1)forloopsareideal foriterating over for -for -for -saredaverseversives likelistorarrays.2)whileopsaresupasiable forsaresutable forscenarioswheretheloopcontinupcontinuspificcond


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

WebStorm Mac版
便利なJavaScript開発ツール

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません
