ホームページ >バックエンド開発 >Python チュートリアル >数分で Ubuntu に Anaconda をセットアップ: AI ワークフローを簡素化
データ サイエンス、機械学習、AI プロジェクトの管理に関しては、適切なツールを使用することで大きな違いが生まれます。 Anaconda は、Python ベースのプロジェクトのパッケージ、依存関係、および環境の管理を簡素化する強力なライブラリです。 AI モデルの開発に積極的に取り組んでいる場合、またはデータ サイエンス業界への参入を楽しみにしている初心者の場合、Anaconda をインストールすると、本格的に開始するために必要なものがすべて揃います。
このガイドでは、インストーラー スクリプトを使用して Ubuntu に Anaconda をインストールし、「conda」環境を初期化してビルドを開始するための段階的なプロセスを示します。
少なくとも次のものを備えた仮想マシン (NodeShift によって提供されるものなど)
Ubuntu 22.04 VM
注: このための前提条件は、ユースケースによって大きく異なります。大規模な展開の場合は、ハイエンド構成を使用できます。
このチュートリアルでは、NodeShift の CPU 搭載仮想マシンを使用します。これは、GDPR、SOC2、ISO27001 の要件を満たす規模で、非常に手頃なコストでハイコンピューティング仮想マシンを提供します。また、直感的でユーザーフレンドリーなインターフェイスを提供しているため、初心者でも簡単にクラウド展開を始めることができます。ただし、選択したクラウド プロバイダーを自由に使用して、チュートリアルの残りの部分で同じ手順に従ってください。
app.nodeshift.com にアクセスし、基本的な詳細を入力してアカウントを作成するか、Google/GitHub アカウントでサインアップを続けます。
すでにアカウントをお持ちの場合は、ダッシュボードに直接ログインしてください。
アカウントにアクセスすると、ダッシュボード (画像を参照) が表示されます。
1) 左側のメニューに移動します。
2) [コンピューティング ノード] オプションをクリックします。
3) 開始 をクリックして、最初の計算ノードの作成を開始します。
これらのコンピューティング ノードは、NodeShift による CPU を搭載した仮想マシンです。これらのノードは高度にカスタマイズ可能で、ニーズに応じて vCPU、RAM、ストレージなどのさまざまな環境構成を制御できます。
1) 最初に表示されるオプションは、信頼性 ドロップダウンです。このオプションを使用すると、VM に求める稼働時間保証レベル (例: 99.9%) を選択できます。
2) 次に、VM を起動する地理的地域を 地域 ドロップダウンから選択します (例: 米国)。
3) 最も重要なことは、各オプションのバーをスライドさせて、ワークロード要件に応じて VM の正しい仕様を選択することです。
1) 必要な構成オプションを選択すると、リージョン内で構成に従って (またはそれに非常に近い) 使用可能な VM が表示されます。この例では、「前提条件」に最も近いものとして「2vCPUs/4GB/80GB SSD」を選択します。
2) 次に、仮想マシンのイメージを選択する必要があります。このチュートリアルの範囲では、Anaconda を Ubuntu にインストールするため、Ubuntu を選択します。
1) 2 つの請求サイクル オプションが利用可能です: 時間単位 (短期使用に最適で従量課金制の柔軟性を提供します)、および 月単位 (長期プロジェクトの場合)一貫した使用率が得られ、コストが削減される可能性があります。
2) 次に、認証方法を選択する必要があります。パスワードと SSH キーの 2 つの方法が利用可能です。 SSH キーはより安全なオプションであるため、使用することをお勧めします。作成するには、公式ドキュメントにアクセスしてください。
最後に、VPC (Virtual Private Cloud) を追加することもできます。これは、安全なプライベート環境でクラウド リソース (仮想マシン、ストレージなど) を起動するための分離セクションを提供します。現時点ではこのオプションをデフォルトのままにしますが、ニーズに応じて自由に VPC を作成してください。
また、数量 オプションをクリックすると、複数のノードを一度にデプロイできます。
それだけです!これで、ノードをデプロイする準備ができました。構成の概要を完成させます。問題がなければ、[作成] をクリックしてノードをデプロイします。
ノードを作成すると、数秒または 1 分以内にデプロイされます。デプロイが完了すると、ステータス実行中が緑色で表示されます。これは、コンピューティング ノードを使用する準備ができていることを意味します!
ノードにこのステータスが表示されたら、以下の手順に従って SSH 経由で実行中の VM に接続します。
1) ターミナルを開き、以下の SSH コマンドを実行します。
(root をユーザー名に置き換え、ダッシュボードからコピーした後、IP の代わりに VM の IP を貼り付けます)
ssh root@ip
2) 場合によっては、接続する前に端末が同意を取ることがあります。 「はい」と入力してください。
3) プロンプトが表示され、パスワードが要求されます。 SSH パスワードを入力すると、接続されるはずです。
出力:
まず、Anaconda をシステムにインストールするのに役立つ Anaconda インストーラーをダウンロードする必要があります。次のコマンドを使用してインストーラーをダウンロードします:
1) システム パッケージのソース リストを更新し、ソフトウェアをアップグレードします。
apt update && apt upgrade -y
出力:
2) 非管理ユーザーを追加します
システム全体への誤った変更を避けるために、非 root または非管理ユーザーを作成し、そのユーザー アカウントを使用してすべてのインストールを実行します。
デモの目的で、「demo」という名前のユーザーを作成し、デモ ユーザーとしてログインします。
(デモを希望のユーザー名に置き換えます)
adduser demo-user usermod -aG sudo demo-user su - demo-user
出力:
3) tmp ディレクトリに移動します
次に、tmp ディレクトリに移動して、インストールを作業ディレクトリから分離します
ssh root@ip
4) インストーラーをダウンロードします
以下のコマンドを使用して、Anaconda のインストールに使用されるインストール スクリプトをダウンロードし、名前を anaconda.sh に変更します
apt update && apt upgrade -y
出力:
次に、以下のコマンドを使用して、ダウンロードしたスクリプトのチェックサムを取得します。
adduser demo-user usermod -aG sudo demo-user su - demo-user
出力:
ダウンロードしたスクリプトが破損していないことを確認するには、上記の出力で取得したチェックサムを、Anaconda の公式 Web サイトから提供されるチェックサムと照合します。
上記と同様に、リスト内でチェックサムを見つけることができれば、スクリプト ファイルは安全に使用でき、続行できます。そうでない場合は、上記の手順を繰り返してスクリプトを再度ダウンロードします。
スクリプトを確認した後、Anaconda のインストールに進みます。
1) 以下のコマンドを使用してスクリプトを実行し、インストールを開始します。
cd /tmp
出力:
注: 上記のコマンドはサイレント インストール (非対話型) を実行します。つまり、インストーラーは、デフォルトの場所や使用許諾契約などの「デフォルト」設定を受け入れると想定します。したがって、パッケージを直接インストールします。
ただし、場所のパスを指定したい場合は、次のコマンドを使用して対話モードでインストールを実行できます。
wget -O anaconda.sh https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
2) Anaconda を初期化する
パッケージを非対話型モードでインストールした場合、または対話型モードでインストールしたが自動初期化を求められたときに「いいえ」と入力した場合は、次のコマンドを使用して Anaconda をアクティブ化します。
sha256sum anaconda.sh
対話モードでダウンロードし、自動初期化プロンプトで「YES」と入力した場合、インストール後に自動的にアクティブ化されます。変更を有効にするには、bash ファイルを更新するだけです:
bash anaconda.sh -b
3) Anaconda 関数を追加します
bash anaconda.sh
出力:
次にシェルを更新します:
source <PATH_TO_CONDA>/bin/activate
4) インストールを確認します
最後に、インストールが完了し、Ananconda を使用する準備ができているかどうかを確認しましょう。
ssh root@ip
出力:
これが表示された場合は、Anaconda のインストールと初期化が成功したことを意味します。これで、新しいターミナルを開くたびに基本環境が自動的に初期化されるため、conda 関数を直接使用し始めることができます。ただし、この動作を望まず、conda を使用する前に毎回環境を手動でアクティブ化したい場合は、以下のコマンドを使用してこれを無効にします。
apt update && apt upgrade -y
これで、conda を使用するたびに、まず「conda activate」を使用して基本環境をアクティブ化する必要があり、それから conda の使用を続行できます。
Anaconda のような強力な Python ライブラリをインストールすることは、データ サイエンスや機械学習のワークフローを強化したいと考えている人にとって重要なステップです。このガイドでは、Anaconda をダウンロード、インストール、アクティブ化して、効率的な開発のための環境を準備する手順を説明しました。 Ubuntu サーバーを NodeShift にデプロイすることで、最適化されたエネルギー消費、スケーラビリティ、最新のワークロードに合わせてカスタマイズされたパフォーマンスの強化などの追加のメリットが得られました。 NodeShift のインフラストラクチャはスムーズで信頼性の高いセットアップを保証し、Anaconda のようなリソースを大量に消費するツールを持続可能かつ効率的な方法で導入するための理想的な選択肢となります。
NodeShift の詳細については:
以上が数分で Ubuntu に Anaconda をセットアップ: AI ワークフローを簡素化の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。