検索
ホームページバックエンド開発Python チュートリアル数分で Ubuntu に Anaconda をセットアップ: AI ワークフローを簡素化

データ サイエンス、機械学習、AI プロジェクトの管理に関しては、適切なツールを使用することで大きな違いが生まれます。 Anaconda は、Python ベースのプロジェクトのパッケージ、依存関係、および環境の管理を簡素化する強力なライブラリです。 AI モデルの開発に積極的に取り組んでいる場合、またはデータ サイエンス業界への参入を楽しみにしている初心者の場合、Anaconda をインストールすると、本格的に開始するために必要なものがすべて揃います。

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

このガイドでは、インストーラー スクリプトを使用して Ubuntu に Anaconda をインストールし、「conda」環境を初期化してビルドを開始するための段階的なプロセスを示します。

前提条件

  • 少なくとも次のものを備えた仮想マシン (NodeShift によって提供されるものなど)

    • 2 つの vCPU
    • 4 GB RAM
    • 20 GB SSD
  • Ubuntu 22.04 VM

注: このための前提条件は、ユースケースによって大きく異なります。大規模な展開の場合は、ハイエンド構成を使用できます。

Ubuntu 22.04 に Anaconda をインストールするための段階的なプロセス

このチュートリアルでは、NodeShift の CPU 搭載仮想マシンを使用します。これは、GDPR、SOC2、ISO27001 の要件を満たす規模で、非常に手頃なコストでハイコンピューティング仮想マシンを提供します。また、直感的でユーザーフレンドリーなインターフェイスを提供しているため、初心者でも簡単にクラウド展開を始めることができます。ただし、選択したクラウド プロバイダーを自由に使用して、チュートリアルの残りの部分で同じ手順に従ってください。

ステップ 1: NodeShift アカウントのセットアップ

app.nodeshift.com にアクセスし、基本的な詳細を入力してアカウントを作成するか、Google/GitHub アカウントでサインアップを続けます。

すでにアカウントをお持ちの場合は、ダッシュボードに直接ログインしてください。

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

ステップ 2: コンピューティング ノード (CPU 仮想マシン) を作成する

アカウントにアクセスすると、ダッシュボード (画像を参照) が表示されます。

1) 左側のメニューに移動します。

2) [コンピューティング ノード] オプションをクリックします。

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

3) 開始 をクリックして、最初の計算ノードの作成を開始します。

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

これらのコンピューティング ノードは、NodeShift による CPU を搭載した仮想マシンです。これらのノードは高度にカスタマイズ可能で、ニーズに応じて vCPU、RAM、ストレージなどのさまざまな環境構成を制御できます。

ステップ 3: VM の構成を選択する

1) 最初に表示されるオプションは、信頼性 ドロップダウンです。このオプションを使用すると、VM に求める稼働時間保証レベル (例: 99.9%) を選択できます。

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

2) 次に、VM を起動する地理的地域を 地域 ドロップダウンから選択します (例: 米国)。

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

3) 最も重要なことは、各オプションのバーをスライドさせて、ワークロード要件に応じて VM の正しい仕様を選択することです。

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

ステップ 4: VM 構成とイメージを選択する

1) 必要な構成オプションを選択すると、リージョン内で構成に従って (またはそれに非常に近い) 使用可能な VM が表示されます。この例では、「前提条件」に最も近いものとして「2vCPUs/4GB/80GB SSD」を選択します。

2) 次に、仮想マシンのイメージを選択する必要があります。このチュートリアルの範囲では、Anaconda を Ubuntu にインストールするため、Ubuntu を選択します。

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

ステップ 5: 請求サイクルと認証方法を選択する

1) 2 つの請求サイクル オプションが利用可能です: 時間単位 (短期使用に最適で従量課金制の柔軟性を提供します)、および 月単位 (長期プロジェクトの場合)一貫した使用率が得られ、コストが削減される可能性があります。

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

2) 次に、認証方法を選択する必要があります。パスワードと SSH キーの 2 つの方法が利用可能です。 SSH キーはより安全なオプションであるため、使用することをお勧めします。作成するには、公式ドキュメントにアクセスしてください。

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

ステップ 6: 詳細を最終決定し、デプロイメントを作成する

最後に、VPC (Virtual Private Cloud) を追加することもできます。これは、安全なプライベート環境でクラウド リソース (仮想マシン、ストレージなど) を起動するための分離セクションを提供します。現時点ではこのオプションをデフォルトのままにしますが、ニーズに応じて自由に VPC を作成してください。

また、数量 オプションをクリックすると、複数のノードを一度にデプロイできます。

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

それだけです!これで、ノードをデプロイする準備ができました。構成の概要を完成させます。問題がなければ、[作成] をクリックしてノードをデプロイします。

ステップ 7: SSH を使用してアクティブな計算ノードに接続する

ノードを作成すると、数秒または 1 分以内にデプロイされます。デプロイが完了すると、ステータス実行中が緑色で表示されます。これは、コンピューティング ノードを使用する準備ができていることを意味します!

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

ノードにこのステータスが表示されたら、以下の手順に従って SSH 経由で実行中の VM に接続します。

1) ターミナルを開き、以下の SSH コマンドを実行します。

(root をユーザー名に置き換え、ダッシュボードからコピーした後、IP の代わりに VM の IP を貼り付けます)

ssh root@ip

2) 場合によっては、接続する前に端末が同意を取ることがあります。 「はい」と入力してください。

3) プロンプトが表示され、パスワードが要求されます。 SSH パスワードを入力すると、接続されるはずです。

出力:

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

ステップ 8: Anaconda インストーラーをダウンロードする

まず、Anaconda をシステムにインストールするのに役立つ Anaconda インストーラーをダウンロードする必要があります。次のコマンドを使用してインストーラーをダウンロードします:

1) システム パッケージのソース リストを更新し、ソフトウェアをアップグレードします。

apt update && apt upgrade -y

出力:

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

2) 非管理ユーザーを追加します

システム全体への誤った変更を避けるために、非 root または非管理ユーザーを作成し、そのユーザー アカウントを使用してすべてのインストールを実行します。

デモの目的で、「demo」という名前のユーザーを作成し、デモ ユーザーとしてログインします。

(デモを希望のユーザー名に置き換えます)

adduser demo-user
usermod -aG sudo demo-user
su - demo-user

出力:

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

3) tmp ディレクトリに移動します

次に、tmp ディレクトリに移動して、インストールを作業ディレクトリから分離します

ssh root@ip

4) インストーラーをダウンロードします

以下のコマンドを使用して、Anaconda のインストールに使用されるインストール スクリプトをダウンロードし、名前を anaconda.sh に変更します

apt update && apt upgrade -y

出力:

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

ステップ 9: インストーラー スクリプトを確認する

次に、以下のコマンドを使用して、ダウンロードしたスクリプトのチェックサムを取得します。

adduser demo-user
usermod -aG sudo demo-user
su - demo-user

出力:

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

ダウンロードしたスクリプトが破損していないことを確認するには、上記の出力で取得したチェックサムを、Anaconda の公式 Web サイトから提供されるチェックサムと照合します。

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

上記と同様に、リスト内でチェックサムを見つけることができれば、スクリプト ファイルは安全に使用でき、続行できます。そうでない場合は、上記の手順を繰り返してスクリプトを再度ダウンロードします。

ステップ 10: Anaconda をインストールする

スクリプトを確認した後、Anaconda のインストールに進みます。

1) 以下のコマンドを使用してスクリプトを実行し、インストールを開始します。

cd /tmp

出力:

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

注: 上記のコマンドはサイレント インストール (非対話型) を実行します。つまり、インストーラーは、デフォルトの場所や使用許諾契約などの「デフォルト」設定を受け入れると想定します。したがって、パッケージを直接インストールします。

ただし、場所のパスを指定したい場合は、次のコマンドを使用して対話モードでインストールを実行できます。

wget -O anaconda.sh https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh

2) Anaconda を初期化する

パッケージを非対話型モードでインストールした場合、または対話型モードでインストールしたが自動初期化を求められたときに「いいえ」と入力した場合は、次のコマンドを使用して Anaconda をアクティブ化します。

sha256sum anaconda.sh

対話モードでダウンロードし、自動初期化プロンプトで「YES」と入力した場合、インストール後に自動的にアクティブ化されます。変更を有効にするには、bash ファイルを更新するだけです:

bash anaconda.sh -b

3) Anaconda 関数を追加します

bash anaconda.sh

出力:

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

次にシェルを更新します:

source <path_to_conda>/bin/activate
</path_to_conda>

4) インストールを確認します

最後に、インストールが完了し、Ananconda を使用する準備ができているかどうかを確認しましょう。

ssh root@ip

出力:

Set up Anaconda on Ubuntu in Minutes: Simplify Your AI Workflow

これが表示された場合は、Anaconda のインストールと初期化が成功したことを意味します。これで、新しいターミナルを開くたびに基本環境が自動的に初期化されるため、conda 関数を直接使用し始めることができます。ただし、この動作を望まず、conda を使用する前に毎回環境を手動でアクティブ化したい場合は、以下のコマンドを使用してこれを無効にします。

apt update && apt upgrade -y

これで、conda を使用するたびに、まず「conda activate」を使用して基本環境をアクティブ化する必要があり、それから conda の使用を続行できます。

結論

Anaconda のような強力な Python ライブラリをインストールすることは、データ サイエンスや機械学習のワークフローを強化したいと考えている人にとって重要なステップです。このガイドでは、Anaconda をダウンロード、インストール、アクティブ化して、効率的な開発のための環境を準備する手順を説明しました。 Ubuntu サーバーを NodeShift にデプロイすることで、最適化されたエネルギー消費、スケーラビリティ、最新のワークロードに合わせてカスタマイズされたパフォーマンスの強化などの追加のメリットが得られました。 NodeShift のインフラストラクチャはスムーズで信頼性の高いセットアップを保証し、Anaconda のようなリソースを大量に消費するツールを持続可能かつ効率的な方法で導入するための理想的な選択肢となります。

NodeShift の詳細については:

  • ウェブサイト
  • ドキュメント
  • リンクトイン
  • X
  • 不和
  • daily.dev

以上が数分で Ubuntu に Anaconda をセットアップ: AI ワークフローを簡素化の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
数値データを保存するためのリストよりも一般的にメモリ効率が高いのはなぜですか?数値データを保存するためのリストよりも一般的にメモリ効率が高いのはなぜですか?May 05, 2025 am 12:15 AM

AlaySaregenerallymorememory-effictient forstring forstring inumericaldataduetotheirfixed-sizenature anddirectmoryaccess.1)AraysstoreElementsinaCourowlock、Reducingoverheadfrompointertersormetadata.2)リスト

PythonリストをPythonアレイに変換するにはどうすればよいですか?PythonリストをPythonアレイに変換するにはどうすればよいですか?May 05, 2025 am 12:10 AM

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

同じPythonリストに異なるデータ型を保存できますか?例を挙げてください。同じPythonリストに異なるデータ型を保存できますか?例を挙げてください。May 05, 2025 am 12:10 AM

Pythonリストは、さまざまな種類のデータを保存できます。サンプルリストには、整数、文字列、フローティングポイント番号、ブール膜、ネストされたリスト、辞書が含まれています。リストの柔軟性は、データ処理とプロトタイピングにおいて価値がありますが、コードの読みやすさと保守性を確保するためには注意して使用する必要があります。

Pythonの配列とリストの違いは何ですか?Pythonの配列とリストの違いは何ですか?May 05, 2025 am 12:06 AM

Pythondoesnothavebuiltinarays; usethearmoduleformemory-efficienthogeneousdatastorage、while-lelistSareversatileformixeddatypes.Arraysareeffientive for forlardatedateSetsetype、wheneasofferistofibuliestibuliestuseduseerieartusedoersorerdatatess。

Pythonで配列を作成するために一般的に使用されるモジュールは何ですか?Pythonで配列を作成するために一般的に使用されるモジュールは何ですか?May 05, 2025 am 12:02 AM

sostCommonlylysedModule forcreatinginpythonisnumpy.1)numProvidesefficientToolsForArrayoperations、理想的なfornumericaldata.2)arrayscanbecreatedusingnp.array()for1dand2dstructures.3)

Pythonリストに要素をどのように追加しますか?Pythonリストに要素をどのように追加しますか?May 04, 2025 am 12:17 AM

toAppendElementStoapyThonList、usetheappend()methodforsingleelements、extend()formultipleElements、andinsert()forspecificopsitions.1)useappend()foraddingoneElementatheend.2)useextend()toaddmultipleelementseffictience.3)

Pythonリストをどのように作成しますか?例を挙げてください。Pythonリストをどのように作成しますか?例を挙げてください。May 04, 2025 am 12:16 AM

To CreateapythonList、usesquareBrackets []およびSeparateItemswithcommas.1)listsaredynamicandcanholdmixdatatypes.2)useappend()、remaid()、andslicingformanipulation.3)listcompreheNsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsientionforcreating.4)

数値データの効率的なストレージと処理が重要な実際のユースケースについて話し合います。数値データの効率的なストレージと処理が重要な実際のユースケースについて話し合います。May 04, 2025 am 12:11 AM

金融、科学研究、医療、およびAIの分野では、数値データを効率的に保存および処理することが重要です。 1)財務では、メモリマッピングされたファイルとnumpyライブラリを使用すると、データ処理速度が大幅に向上する可能性があります。 2)科学研究の分野では、HDF5ファイルはデータストレージと取得用に最適化されています。 3)医療では、インデックス作成やパーティション化などのデータベース最適化テクノロジーがデータのパフォーマンスを向上させます。 4)AIでは、データシャーディングと分散トレーニングがモデルトレーニングを加速します。システムのパフォーマンスとスケーラビリティは、適切なツールとテクノロジーを選択し、ストレージと処理速度の間のトレードオフを検討することにより、大幅に改善できます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。