Python でデコレータを作成およびチェーンする方法
デコレータの作成
という別の関数を受け取るデコレータ関数を作成します。 「ラップされた」関数として、引数:
def my_decorator(func): # Code to execute before calling the wrapped function print("Before the function runs") # Call the wrapped function and store its return value result = func() # Code to execute after calling the wrapped function print("After the function runs") # Return the result of the wrapped function return result # Example of a decorator in action @my_decorator def say_hello(): print("Hello, world!")
デコレータの連鎖
同じ関数に複数のデコレータを適用するには @ 演算子を使用します:
@my_decorator @another_decorator def chained_function(): print("This function is doubly decorated")
引数を持つデコレータ
デコレータに次のことを許可します。引数を受け入れる:
def decorator_with_arg(arg1, arg2): def decorator(func): # Use the decorator arguments to modify the wrapped function's behavior func.arg1 = arg1 func.arg2 = arg2 return func # Example of a decorator with arguments @decorator_with_arg("foo", "bar") def my_function(): print("Args:", my_function.arg1, my_function.arg2)
クラス メソッドのデコレータ
クラス内のメソッドにデコレータを使用する:
class MyClass: @classmethod def my_class_method(cls): print("This is a class method")
練習:デコレータの装飾
デコレータを作成するこれにより、他のデコレータが引数を受け入れるようになります:
def decorator_with_args(decorator_to_enhance): def decorator_maker(*args, **kwargs): def decorator_wrapper(func): # Wrap the original decorator and pass the arguments return decorator_to_enhance(func, *args, **kwargs) return decorator_wrapper # Example of a decorated decorator @decorator_with_args def decorated_decorator(func, *args, **kwargs): print("Args:", args, kwargs) return func @decorated_decorator(10, 20, name="John") def my_function(): print("Decorated function")
ベスト プラクティス
- デコレータのオーバーヘッドによるコードの速度低下を回避します。
- を使用します。 functools.wraps() を使用して元の関数を保存します。
- デコレータは、関数に適用されると永続的になります。
- デバッグに使用するか、外部ライブラリから既存の機能を拡張することを検討してください。
使用例
タスクにデコレータを使用する例:
- 関数の実行時間の測定 (@benchmark)
- 関数呼び出しのログ記録 (@logging)
- 関数呼び出しのカウント (@counter)
- 関数の結果をキャッシュする
以上がPython でデコレータを効果的に使用してチェーンする方法は?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

この記事では、コマンドラインインターフェイス(CLI)の構築に関するPython開発者をガイドします。 Typer、Click、Argparseなどのライブラリを使用して、入力/出力の処理を強調し、CLIの使いやすさを改善するためのユーザーフレンドリーな設計パターンを促進することを詳述しています。

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

この記事では、Pythonにおける仮想環境の役割について説明し、プロジェクトの依存関係の管理と競合の回避に焦点を当てています。プロジェクト管理の改善と依存関係の問題を減らすための作成、アクティベーション、およびメリットを詳しく説明しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

WebStorm Mac版
便利なJavaScript開発ツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

ドリームウィーバー CS6
ビジュアル Web 開発ツール

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ホットトピック



