InterSystems Cloud Document と Databricks を使用して、ミシガン州全域の Rivian R1S からの gnSSLocation データをプロットします
ドキュメント データベースのユースケースを探しているとしたら、私が一番気に入っている非常にシンプルなユースケースは、SQL を使用して他のデータと並べて JSON の山をクエリできる機能であるということに気づきました。特に何もせずに。これは、強力なマルチ モデル インターシステムズ データ プラットフォームによって実現された夢です。ここでは、Rivian R1S が DeezWatts (A Rivian Data Adventure) 用に出力している地理的位置データを視覚化するためのシンプルなノートブックで示しています。
ここでは、JDBC ドキュメント ドライバーを使用した、InterSystems Cloud ドキュメントのからへの取り込みとからの視覚化という 2 段階のアプローチを示します。
InterSystems クラウド ドキュメント展開
まず、リスナーを有効にして、InterSystems Cloud Services Portal 上で小規模な Cloud Document デプロイメントを起動しました。
SSL 証明書をダウンロードし、JDBC 用のドライバーと付属のドキュメント ドライバーも入手しました。
摂取
取り込みの場合、ファイル システムから JSON ドキュメントを取得し、リスナーを介してドキュメント データベースにコレクションとして保持する方法を把握したいと思い、そのためにスタンドアロンの Java アプリを作成しました。データをノートブックに保存した後、楽しいことがすべてノートブック内で起こるため、これはより実用的でした。
RivianDocDB.java
package databricks_rivian_irisdocdb; import java.sql.SQLException; import com.intersystems.document.*; import com.fasterxml.jackson.core.JsonParser; import com.fasterxml.jackson.*; import java.io.IOException; import java.io.InputStream; import java.io.File; import java.io.FileInputStream; import org.apache.commons.io.IOUtils; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; import java.util.stream.Stream; public <span>class RivianDocDb </span>{ <span>public static void main(String[] args) </span>{ String directoryPath = "/home/sween/Desktop/POP2/DEEZWATTS/rivian-iris-docdb/databricks_rivian_irisdocdb/in/json/"; DataSource datasrc = DataSource.createDataSource(); datasrc.setPortNumber(443); datasrc.setServerName("k8s-05868f04-a88b7ecb-5c5e41660d-404345a22ba1370c.elb.us-east-1.amazonaws.com"); datasrc.setDatabaseName("USER"); datasrc.setUser("SQLAdmin"); datasrc.setPassword("REDACTED"); try { datasrc.setConnectionSecurityLevel(10); } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.out.println("\nCreated datasrc\n"); System.out.println(datasrc); datasrc.preStart(2); System.out.println("\nDataSource size =" + datasrc.getSize()); // creates the collection if it dont exist Collection collectedDocs = Collection.getCollection(datasrc,"deezwatts2"); try (Stream<path> paths = Files.list(Paths.get(directoryPath))) { paths.filter(Files::isRegularFile) .forEach(path -> { File file = path.toFile(); }); } catch (IOException e) { e.printStackTrace(); } File directory = new File(directoryPath); if (directory.isDirectory()) { File[] files = directory.listFiles(); if (files != null) { for (File file : files) { if (file.isFile()) { try (InputStream is = new FileInputStream("/home/sween/Desktop/POP2/DEEZWATTS/rivian-iris-docdb/databricks_rivian_irisdocdb/in/json/" + file.getName())) { String jsonTxt = IOUtils.toString(is, "UTF-8"); Document doc2 = JSONObject.fromJSONString(jsonTxt); // top level key is whip2 Document doc3 = new JSONObject().put("whip2",doc2); collectedDocs.insert(doc3); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } } } long size = collectedDocs.size(); System.out.println(Long.toString(size)); System.out.println("\nIngested Documents =" + datasrc.getSize());</path>
上記は JAVA のゴミ箱にかなり近いものですが、機能しました。デプロイメントのコレクション ブラウザーでコレクションを確認できます。
データブリック
これには Databricks のセットアップが少し必要ですが、楽しい部分として pyspark を使用する価値は十分にあります。
2 つの InterSystems ドライバーをクラスターに追加し、証明書を import_cloudsql_certficiate.sh クラスター初期化スクリプトに配置して、キーストアに追加できるようにしました。
完全を期すため、クラスターでは Databricks 16、Spark 3.5.0、および Scala 2.12 を実行しています
視覚化
したがって、PySpark ジョブを実行し、ドラッグするデータのサブセット内のどこにウィップが入ったかをプロットするように設定する必要があります。
私たちは、プロットへの直接的なアプローチのために geopandas とジオデータセットを使用しています。
package databricks_rivian_irisdocdb; import java.sql.SQLException; import com.intersystems.document.*; import com.fasterxml.jackson.core.JsonParser; import com.fasterxml.jackson.*; import java.io.IOException; import java.io.InputStream; import java.io.File; import java.io.FileInputStream; import org.apache.commons.io.IOUtils; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; import java.util.stream.Stream; public <span>class RivianDocDb </span>{ <span>public static void main(String[] args) </span>{ String directoryPath = "/home/sween/Desktop/POP2/DEEZWATTS/rivian-iris-docdb/databricks_rivian_irisdocdb/in/json/"; DataSource datasrc = DataSource.createDataSource(); datasrc.setPortNumber(443); datasrc.setServerName("k8s-05868f04-a88b7ecb-5c5e41660d-404345a22ba1370c.elb.us-east-1.amazonaws.com"); datasrc.setDatabaseName("USER"); datasrc.setUser("SQLAdmin"); datasrc.setPassword("REDACTED"); try { datasrc.setConnectionSecurityLevel(10); } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.out.println("\nCreated datasrc\n"); System.out.println(datasrc); datasrc.preStart(2); System.out.println("\nDataSource size =" + datasrc.getSize()); // creates the collection if it dont exist Collection collectedDocs = Collection.getCollection(datasrc,"deezwatts2"); try (Stream<path> paths = Files.list(Paths.get(directoryPath))) { paths.filter(Files::isRegularFile) .forEach(path -> { File file = path.toFile(); }); } catch (IOException e) { e.printStackTrace(); } File directory = new File(directoryPath); if (directory.isDirectory()) { File[] files = directory.listFiles(); if (files != null) { for (File file : files) { if (file.isFile()) { try (InputStream is = new FileInputStream("/home/sween/Desktop/POP2/DEEZWATTS/rivian-iris-docdb/databricks_rivian_irisdocdb/in/json/" + file.getName())) { String jsonTxt = IOUtils.toString(is, "UTF-8"); Document doc2 = JSONObject.fromJSONString(jsonTxt); // top level key is whip2 Document doc3 = new JSONObject().put("whip2",doc2); collectedDocs.insert(doc3); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } } } long size = collectedDocs.size(); System.out.println(Long.toString(size)); System.out.println("\nIngested Documents =" + datasrc.getSize());</path>
慣れるまで少し時間がかかりますが、JSON パス構文と JSON_TABLE を使用した InterSystems Cloud Document へのクエリを次に示します。
import geopandas as gpd import geodatasets from shapely.geometry import Polygon
json パス @ jsonpath.com を非常に簡単に作成できるサイトをなんとか見つけました。
次に、IRIS Document Database Deployment への接続をセットアップし、それをデータフレームに読み込みます。
dbtablequery = f"(SELECT TOP 1000 lat,longitude FROM JSON_TABLE(deezwatts2 FORMAT COLLECTION, '$' COLUMNS (lat VARCHAR(20) path '$.whip2.data.vehicleState.gnssLocation.latitude', longitude VARCHAR(20) path '$.whip2.data.vehicleState.gnssLocation.longitude' ))) AS temp_table;"
次に、ジオデータセットから利用可能な地図を取得します。sdoh 地図は、米国の一般的な使用に最適です。
# Read data from InterSystems Document Database via query above df = (spark.read.format("jdbc") \ .option("url", "jdbc:IRIS://k8s-05868f04-a88b7ecb-5c5e41660d-404345a22ba1370c.elb.us-east-1.amazonaws.com:443/USER") \ .option("jars", "/Volumes/cloudsql/iris/irisvolume/intersystems-document-1.0.1.jar") \ .option("driver", "com.intersystems.jdbc.IRISDriver") \ .option("dbtable", dbtablequery) \ .option("sql", "SELECT * FROM temp_table;") \ .option("user", "SQLAdmin") \ .option("password", "REDACTED") \ .option("connection security level","10") \ .option("sslConnection","true") \ .load())
ここで、R1S が走行した場所の地理的位置ポイントを含める場所にズームインします。このためには、ミシガン州の境界ボックスが必要です。
このために、Keene の非常に洗練されたツールを使用してジオ フェンス境界ボックスを描画し、座標配列を取得しました。
バウンディングボックスの座標配列を取得したので、それらを Polygon オブジェクトに叩き込む必要があります。
# sdoh map is fantastic with bounding boxes michigan = gpd.read_file(geodatasets.get_path("geoda.us_sdoh")) gdf = gpd.GeoDataFrame( df.toPandas(), geometry=gpd.points_from_xy(df.toPandas()['longitude'].astype(float), df.toPandas()['lat'].astype(float)), crs=michigan.crs #"EPSG:4326" )
さあ、Rivian R1S の軌跡を描いてみましょう!これは約 10,000 件のレコードを対象とします (結果を制限するために上記の先頭のステートメントを使用しました)
polygon = Polygon([ ( -87.286377, 45.9664245 ), ( -81.6503906, 45.8134865 ), ( -82.3864746, 42.1063737 ), ( -84.7814941, 41.3520721 ), ( -87.253418, 42.5045029 ), ( -87.5610352, 45.8823607 ) ])
そして、ここにあります...デトロイト、トラバースシティ、シルバーレイク砂丘、オランダ、ボレット湖、インターラチェン...純粋なミシガン、リビアンスタイル。
以上がIRIS Cloud Document と Databricks を使用した Rivian GeoLocation プロットの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

メモ帳++7.3.1
使いやすく無料のコードエディター
