検索
ホームページバックエンド開発Python チュートリアルPandas で「大規模データ」を効率的に管理および処理するにはどうすればよいですか?

How Can I Efficiently Manage and Process

Pandas の「大規模データ」のワークフロー

メモリに収まるには大きすぎるが、ハード ドライブには十分小さいデータセットを扱う場合、効果的なデータセットを確立することが不可欠です。 「大規模データ」を管理するためのワークフロー。この記事では、HDFStore や MongoDB などのツールを使用してデータをインポート、クエリ、更新するためのベスト プラクティスについて説明します。

Pandas を使用した大規模データ操作のワークフロー

永続的なデータベース構造へのフラット ファイルのロード

フラット ファイルを永続的なオンディスク データベースにロードするには、HDFStore の使用を検討してください。これにより、大規模なデータセットをディスクに保存し、分析のために必要な部分だけを Pandas データフレームに取得できます。

データベースをクエリして Pandas のデータを取得する

データがが保存されている場合は、クエリを実行してデータのサブセットを取得できます。 MongoDB は、このプロセスを簡素化する代替オプションです。

Pandas で部分を操作した後のデータベースの更新

Pandas からの新しいデータでデータベースを更新するには、新しい列を追加しますHDFStore を使用して既存のデータベース構造にコピーします。ただし、効率に影響を与える可能性があるため、新しい列を追加するときはデータ型を考慮することが重要です。

実際の例

次の例は、これらのワークフローが適用される一般的なシナリオを示しています。

  1. 大きなフラット ファイルのインポート: 大きなフラット ファイル データをパーマネント ファイルに繰り返しインポートします。ディスク上のデータベース構造。
  2. パンダ データフレームのクエリ: データベースにクエリを実行して、データのサブセットをメモリ効率の高い Pandas データフレームに取得します。
  3. 新しい列の作成: 選択した列に対して操作を実行して新しい化合物を作成しますcolumns.
  4. 新しい列を追加します: HDFStore などを使用して、新しく作成した列をデータベース構造に追加します。

追加の考慮事項

大規模なデータを扱う場合は、上記のような構造化されたワークフローを定義することが重要です。これにより、複雑さが最小限に抑えられ、データ管理の効率が向上します。

もう 1 つの重要な側面は、データの性質と実行される操作を理解することです。たとえば、行単位の操作が実行されている場合、データを行単位の形式で保存すると (例: pytables を使用)、効率が向上します。

ストレージ効率とクエリ パフォーマンスの最適なバランスを決定することも重要です。 。圧縮技術を採用し、データ列を確立すると、ストレージ スペースを最適化し、行レベルのサブセット化を促進できます。

Pandas で大規模なデータを操作するときにこれらのベスト プラクティスに従うことで、データ分析プロセスを合理化し、パフォーマンスとパフォーマンスの向上を実現できます。信頼性。

以上がPandas で「大規模データ」を効率的に管理および処理するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python vs. C:重要な違​​いを理解しますPython vs. C:重要な違​​いを理解しますApr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python vs. C:プロジェクトのためにどの言語を選択しますか?Python vs. C:プロジェクトのためにどの言語を選択しますか?Apr 21, 2025 am 12:17 AM

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

Pythonの目標に到達する:毎日2時間のパワーPythonの目標に到達する:毎日2時間のパワーApr 20, 2025 am 12:21 AM

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

2時間の最大化:効果的なPython学習戦略2時間の最大化:効果的なPython学習戦略Apr 20, 2025 am 12:20 AM

2時間以内にPythonを効率的に学習する方法は次のとおりです。1。基本的な知識を確認し、Pythonのインストールと基本的な構文に精通していることを確認します。 2。変数、リスト、関数など、Pythonのコア概念を理解します。 3.例を使用して、基本的および高度な使用をマスターします。 4.一般的なエラーとデバッグテクニックを学習します。 5.リストの概念を使用したり、PEP8スタイルガイドに従ったりするなど、パフォーマンスの最適化とベストプラクティスを適用します。

PythonとCのどちらかを選択:あなたに適した言語PythonとCのどちらかを選択:あなたに適した言語Apr 20, 2025 am 12:20 AM

Pythonは初心者やデータサイエンスに適しており、Cはシステムプログラミングとゲーム開発に適しています。 1. Pythonはシンプルで使いやすく、データサイエンスやWeb開発に適しています。 2.Cは、ゲーム開発とシステムプログラミングに適した、高性能と制御を提供します。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Python vs. C:プログラミング言語の比較分析Python vs. C:プログラミング言語の比較分析Apr 20, 2025 am 12:14 AM

Pythonはデータサイエンスと迅速な発展により適していますが、Cは高性能およびシステムプログラミングにより適しています。 1. Python構文は簡潔で学習しやすく、データ処理と科学的コンピューティングに適しています。 2.Cには複雑な構文がありますが、優れたパフォーマンスがあり、ゲーム開発とシステムプログラミングでよく使用されます。

1日2時間:Python学習の可能性1日2時間:Python学習の可能性Apr 20, 2025 am 12:14 AM

Pythonを学ぶために1日2時間投資することは可能です。 1.新しい知識を学ぶ:リストや辞書など、1時間で新しい概念を学びます。 2。練習と練習:1時間を使用して、小さなプログラムを書くなどのプログラミング演習を実行します。合理的な計画と忍耐力を通じて、Pythonのコアコンセプトを短時間で習得できます。

Python vs. C:曲線と使いやすさの学習Python vs. C:曲線と使いやすさの学習Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません