ホームページ >バックエンド開発 >Python チュートリアル >Python で Pandas DataFrame をピボットするにはどうすればよいですか?
データフレームをピボットするにはどうすればよいですか?
ピボットとは何ですか?
ピボットとは行と列を交換することで DataFrame を再形成するために使用されるデータ変換手法。これは、分析や視覚化を容易にする方法でデータを整理するためによく使用されます。
ピボットするにはどうすればよいですか?
DataFrame をピボットするにはいくつかの方法があります。 Pandas ライブラリを使用した Python:
1. pd.DataFrame.pivot_table:
このメソッドは、データをピボットするための多用途で機能が豊富なオプションです。集計する値、集計関数、行インデックスと列インデックスを指定できます。
例:
import pandas as pd # Create a sample DataFrame df = pd.DataFrame({ "row": ["row0", "row1", "row2", "row3", "row4"], "col": ["col0", "col1", "col2", "col3", "col4"], "val0": [0.81, 0.44, 0.77, 0.15, 0.81], "val1": [0.04, 0.07, 0.01, 0.59, 0.64] }) # Pivot the DataFrame using pivot_table df_pivoted = df.pivot_table( index="row", columns="col", values="val0", aggfunc="mean", ) print(df_pivoted) # Output: col0 col1 col2 col3 col4 row row0 0.77 0.445 0.000 0.860 0.650 row1 0.130 0.000 0.395 0.500 0.250 row2 0.000 0.310 0.000 0.545 0.000 row3 0.000 0.100 0.395 0.760 0.240 row4 0.000 0.000 0.000 0.000 0.000
2. pd.DataFrame.groupby pd.DataFrame.unstack:
このメソッドには、目的の行インデックスと列インデックスによって DataFrame をグループ化し、次に unstack を使用してグループ化されたデータをピボットすることが含まれます。
例:
# Group the DataFrame by row and col df_grouped = df.groupby(["row", "col"]) # Perform pivot using unstack df_pivoted = df_grouped["val0"].unstack(fill_value=0) print(df_pivoted) # Output: col col0 col1 col2 col3 col4 row row0 0.81 0.445 0.000 0.860 0.650 row1 0.130 0.000 0.395 0.500 0.250 row2 0.000 0.310 0.000 0.545 0.000 row3 0.000 0.100 0.395 0.760 0.240 row4 0.000 0.000 0.000 0.000 0.000
3. pd.DataFrame.set_index pd.DataFrame.unstack:
このメソッドには、目的の行と列のインデックスを DataFrame のインデックスとして設定し、unstack を使用してデータをピボットすることが含まれます。
例:
# Set the row and col as the DataFrame's index df = df.set_index(["row", "col"]) # Perform pivot using unstack df_pivoted = df["val0"].unstack(fill_value=0) print(df_pivoted) # Output: col col0 col1 col2 col3 col4 row row0 0.81 0.445 0.000 0.860 0.650 row1 0.130 0.000 0.395 0.500 0.250 row2 0.000 0.310 0.000 0.545 0.000 row3 0.000 0.100 0.395 0.760 0.240 row4 0.000 0.000 0.000 0.000 0.000
4. pd.DataFrame.pivot:
このメソッドは、pivot_table と比較して構文が単純ですが、機能が制限されています。指定できるのは行インデックスと列インデックスのみであり、集計は実行できません。
例:
# Perform pivot using pivot df_pivoted = df.pivot(index="row", columns="col") print(df_pivoted) # Output: col col0 col1 col2 col3 col4 row row0 key0 0.81 0.44 0.00 0.86 0.65 row1 key1 0.13 0.00 0.39 0.50 0.25 row2 key1 0.00 0.31 0.00 0.54 0.00 row3 key0 0.00 0.10 0.39 0.76 0.24 row4 key1 0.00 0.00 0.00 0.00 0.00
ロング形式からワイド形式へ
2 つだけを使用して DataFrame をロング フォーマットからワイド フォーマットに変換するには列:
1. pd.DataFrame.pivot(index=column_to_index, columns=column_to_columns,values=values_to_pivot**):
例:
df["Combined"] = df["row"] + "|" + df["col"] df_pivoted = df.pivot(index="Combined", columns="A", values="B") print(df_pivoted) # Output: A a b c Combined row0|col0 0.0 10.0 7.0 row1|col1 11.0 10.0 NaN row2|col2 2.0 14.0 NaN row3|col3 11.0 NaN NaN row4|col4 NaN NaN NaN
2. pd.DataFrame.groupby pd.DataFrame.unstack:
df["Combined"] = df["row"] + "|" + df["col"] df_grouped = df.groupby(["Combined", "A"]) df_pivoted = df_grouped["B"].unstack(fill_value=0) print(df_pivoted) # Output: A a b c Combined row0|col0 0.0 10.0 7.0 row1|col1 11.0 10.0 NaN row2|col2 2.0 14.0 NaN row3|col3 11.0 NaN NaN row4|col4 NaN NaN NaN
ピボット後に複数のインデックスを単一のインデックスにフラット化します:
df_pivoted.columns = df_pivoted.columns.map("|".join) print(df_pivoted) # Output: a|col0 b|col0 c|col0 a|col1 b|col1 c|col1 a|col2 b|col2 c|col2 a|col3 b|col3 c|col3 row row0 0.0 10.0 7.0 11.0 10.0 NaN 2.0 14.0 NaN 11.0 NaN NaN row1 0.0 10.0 7.0 11.0 10.0 NaN 2.0 14.0 NaN 11.0 NaN NaN
以上がPython で Pandas DataFrame をピボットするにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。