Pandas でのデータのグループ化と合計
データ分析では、意味のある洞察を得るために特定の基準に従ってデータを集計することが必要になることがよくあります。データ操作用の強力な Python ライブラリである Pandas は、1 つ以上の列に基づいてデータをグループ化する groupby() メソッドを提供します。このメソッドを sum() などの集計関数と組み合わせて、各グループの集計値を計算できます。
グループごとの値の合計の計算
次のように仮定します。個人による果物の消費に関する情報を含むデータフレームを持っています。各行は、果物の種類、購入日、顧客名、購入した果物の数を含む果物の購入を表します。
各個人が購入した果物の合計数を、果物の種類と顧客名の両方でグループ化して計算します。
ステップ 1: データをグループ化する
まず、両方で DataFrame をグループ化します。 groupby() メソッドを使用した 'Fruit' 列と 'Name' 列:
df_grouped = df.groupby(['Fruit', 'Name'])
これにより、グループ化されたデータを表す SeriesGroupBy オブジェクトが作成されます。
ステップ 2: 適用Sum 関数
各グループが購入した果物の総数を計算するには、グループ化されたシリーズへの sum() 関数:
df_grouped_sum = df_grouped['Number'].sum()
結果のシリーズ df_grouped_sum には、果物の種類と顧客名の固有の組み合わせごとに果物購入の合計が含まれます。
例
次のことを考えてみましょうDataFrame:
Fruit Date Name Number Apples 10/6/2016 Bob 7 Apples 10/6/2016 Bob 8 Apples 10/6/2016 Mike 9 Apples 10/7/2016 Steve 10 Apples 10/7/2016 Bob 1 Oranges 10/7/2016 Bob 2 Oranges 10/6/2016 Tom 15 Oranges 10/6/2016 Mike 57 Oranges 10/6/2016 Bob 65 Oranges 10/7/2016 Tony 1 Grapes 10/7/2016 Bob 1 Grapes 10/7/2016 Tom 87 Grapes 10/7/2016 Bob 22 Grapes 10/7/2016 Bob 12 Grapes 10/7/2016 Tony 15
この DataFrame に groupby() および sum() 操作を適用すると、次の結果が得られます:
Number Fruit Name Apples Bob 16 Mike 9 Steve 10 Grapes Bob 35 Tom 87 Tony 15 Oranges Bob 67 Mike 57 Tom 15 Tony 1
この出力は、によって購入されたフルーツの合計数を示しています。それぞれの個体を果物の種類ごとに分類します。
以上がPandas でデータをグループ化および合計して、顧客および果物の種類ごとに購入総額を計算するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonに2つのリストを接続する多くの方法があります。1。オペレーターを使用しますが、これはシンプルですが、大きなリストでは非効率的です。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3。=演算子を使用します。これは効率的で読み取り可能です。 4。itertools.chain関数を使用します。これはメモリ効率が高いが、追加のインポートが必要です。 5。リストの解析を使用します。これはエレガントですが、複雑すぎる場合があります。選択方法は、コードのコンテキストと要件に基づいている必要があります。

Pythonリストをマージするには多くの方法があります。1。オペレーターを使用します。オペレーターは、シンプルですが、大きなリストではメモリ効率的ではありません。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3. Itertools.chainを使用します。これは、大規模なデータセットに適しています。 4.使用 *オペレーター、1つのコードで小規模から中型のリストをマージします。 5. numpy.concatenateを使用します。これは、パフォーマンス要件の高い大規模なデータセットとシナリオに適しています。 6.小さなリストに適したが、非効率的な追加方法を使用します。メソッドを選択するときは、リストのサイズとアプリケーションのシナリオを考慮する必要があります。

compiledlanguagesOfferspeedandsecurity、foredlanguagesprovideeaseofuseandportability.1)compiledlanguageslikec arefasterandsecurebuthavelOnderdevelopmentsplat dependency.2)

Pythonでは、forループは反復可能なオブジェクトを通過するために使用され、条件が満たされたときに操作を繰り返し実行するためにしばらくループが使用されます。 1)ループの例:リストを通過し、要素を印刷します。 2)ループの例:正しいと推測するまで、数値ゲームを推測します。マスタリングサイクルの原則と最適化手法は、コードの効率と信頼性を向上させることができます。

リストを文字列に連結するには、PythonのJoin()メソッドを使用して最良の選択です。 1)join()メソッドを使用して、 '' .join(my_list)などのリスト要素を文字列に連結します。 2)数字を含むリストの場合、連結する前にマップ(str、数字)を文字列に変換します。 3) '、'などの複雑なフォーマットに発電機式を使用できます。 4)混合データ型を処理するときは、MAP(STR、Mixed_List)を使用して、すべての要素を文字列に変換できるようにします。 5)大規模なリストには、 '' .join(lage_li)を使用します

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)

keydifferencesは、「for」と「while "loopsare:1)" for "for" loopsareideal forterating overencesonownowiterations、while2) "for" for "for" for "for" for "for" for "for" for for for for "wide" loopsarebetterunuinguntinunuinguntinisisisisisisisisisisisisisisisisisisisisisisisisisisisations.un

Pythonでは、さまざまな方法でリストを接続して重複要素を管理できます。1)オペレーターを使用するか、すべての重複要素を保持します。 2)セットに変換してから、リストに戻ってすべての重複要素を削除しますが、元の順序は失われます。 3)ループを使用するか、包含をリストしてセットを組み合わせて重複要素を削除し、元の順序を維持します。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

Dreamweaver Mac版
ビジュアル Web 開発ツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。
