Pandas での Loc と Iloc のスライス
Loc と iloc は、Pandas で一般的に使用される 2 つのスライス方法であり、行とデータフレームからの列。ただし、その微妙な違いを理解すると混乱する可能性があります。
主な違い: ラベルと場所
loc と iloc の主な違いは、使用するインデックスの種類にあります。 :
- Loc: で動作しますラベル、具体的にはインデックスまたは列ラベルの実際の値。
- Iloc: 整数の位置を操作し、行または列の位置を表します。の列DataFrame.
例:
非単調整数の DataFrame を考えます。 Index:
df = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9] }, index=[0, 2, 4])
Loc:
- df.loc[0] は、位置に関係なく、インデックス ラベル 0 の行にアクセスします。
- df.loc[0:1] は、インデックス ラベル 0 と 0 を持つ行を取得します。 1.
Iloc:
- df.iloc[0] は、インデックス ラベルに関係なく、インデックス位置 0 の行を取得します。
- df.iloc[0:1] はインデックスの場所を次のように指定しているため、最初の行のみにアクセスします。 integers.
使用上の主な違い:
Feature | Loc | Iloc |
---|---|---|
Indexing | Labels | Integer locations |
Slicing | Inclusive (by default) | Exclusive (by default) |
Out-of-bounds behavior | KeyError | IndexError |
Negative indexing | Supported | Supported for final row only |
Boolean masking | NotImplementedError | Supports boolean mask |
Callable indexing | Function applied to index | Function applied to row or column |
Loc と Iloc を使用する場合:
- 必要な場合は loc を使用してください特定の名前やカテゴリなどのラベルに基づいてインデックスを作成します。
- 整数ベースのインデックス付け、特に開始点と終了点が明確なスライス操作の場合は、iloc を推奨します。
- は避けてください。 iloc ブール値のマスキング操作または論理に基づくインデックス作成条件。
以上がPandas における Loc と Iloc: スライスにそれぞれをいつ使用する必要がありますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Tomergelistsinpython、あなたはオペレーター、extendmethod、listcomfulting、olitertools.chain、それぞれの特異的advantages:1)operatorissimplebutlessforlargelist;

Python 3では、2つのリストをさまざまな方法で接続できます。1)小さなリストに適したオペレーターを使用しますが、大きなリストには非効率的です。 2)メモリ効率が高い大規模なリストに適した拡張方法を使用しますが、元のリストは変更されます。 3)元のリストを変更せずに、複数のリストをマージするのに適した *オペレーターを使用します。 4)Itertools.chainを使用します。これは、メモリ効率が高い大きなデータセットに適しています。

Join()メソッドを使用することは、Pythonのリストから文字列を接続する最も効率的な方法です。 1)join()メソッドを使用して、効率的で読みやすくなります。 2)サイクルは、大きなリストに演算子を非効率的に使用します。 3)リスト理解とJoin()の組み合わせは、変換が必要なシナリオに適しています。 4)redoce()メソッドは、他のタイプの削減に適していますが、文字列の連結には非効率的です。完全な文は終了します。

pythonexexecutionistheprocessoftransforningpythoncodeintoexecutabletructions.1)interpreterreadSthecode、変換intobytecode、thepythonvirtualmachine(pvm)executes.2)theglobalinterpreeterlock(gil)管理委員会、

Pythonの主な機能には次のものがあります。1。構文は簡潔で理解しやすく、初心者に適しています。 2。動的タイプシステム、開発速度の向上。 3。複数のタスクをサポートするリッチ標準ライブラリ。 4.強力なコミュニティとエコシステム、広範なサポートを提供する。 5。スクリプトと迅速なプロトタイピングに適した解釈。 6.さまざまなプログラミングスタイルに適したマルチパラダイムサポート。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 中国語版
中国語版、とても使いやすい

WebStorm Mac版
便利なJavaScript開発ツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

ドリームウィーバー CS6
ビジュアル Web 開発ツール
