複数の CSV ファイルを単一の DataFrame に連結する
問題ステートメント
複数の CSV ファイルを効率的に統合して 1 つの DataFrame に結合するための、簡潔で信頼性の高いソリューション求められている。ただし、連結ループ内で障害が発生しました。
解決策
問題を解決して CSV ファイルを正常に連結するには、次の包括的なコード スニペットを使用できます:
import os import pandas as pd from pathlib import Path path = r'C:\DRO\DCL_rawdata_files' all_files = Path(path).glob('*.csv') df = pd.concat((pd.read_csv(f) for f in all_files), ignore_index=True)
このコードは、ジェネレーター式を利用して各 CSV ファイルを個別に読み取り、それらを 1 つの DataFrame に連結します。 ignore_index パラメーターは、連結された DataFrame に連続した行インデックスがあることを保証します。
データの出所を識別するための情報の追加
特定のシナリオでは、連結された DataFrame にソースを示す列を追加すると有益な場合があります。各行のファイル。これは、次のいずれかの方法を使用して実現できます。
オプション 1: 新しい列としてファイル名を追加
dfs = [] for f in all_files: data = pd.read_csv(f) data['file'] = f.stem dfs.append(data) df = pd.concat(dfs, ignore_index=True)
オプション 2: 汎用ファイルを追加新規としてのソース列
dfs = [] for i, f in enumerate(all_files): data = pd.read_csv(f) data['file'] = f'File {i}' dfs.append(data) df = pd.concat(dfs, ignore_index=True)
オプション 3: リスト内包表記を使用したファイル ソースの追加
dfs = [pd.read_csv(f) for f in all_files] df = pd.concat(dfs, ignore_index=True) df['Source'] = np.repeat([f'S{i}' for i in range(len(dfs))], [len(df) for df in dfs])
オプション 4: .assign を使用した単一行ソリューション()
df = pd.concat((pd.read_csv(f).assign(filename=f.stem) for f in all_files), ignore_index=True)
実装することでこれらのオプションの 1 つでは、連結された DataFrame に各行の起源を追跡するための情報が注釈として付けられます。
以上が複数の CSV ファイルを単一の Pandas DataFrame に効率的に連結し、データの出所を追跡するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)

keydifferencesは、「for」と「while "loopsare:1)" for "for" loopsareideal forterating overencesonownowiterations、while2) "for" for "for" for "for" for "for" for "for" for for for for "wide" loopsarebetterunuinguntinunuinguntinisisisisisisisisisisisisisisisisisisisisisisisisisisisations.un

Pythonでは、さまざまな方法でリストを接続して重複要素を管理できます。1)オペレーターを使用するか、すべての重複要素を保持します。 2)セットに変換してから、リストに戻ってすべての重複要素を削除しますが、元の順序は失われます。 3)ループを使用するか、包含をリストしてセットを組み合わせて重複要素を削除し、元の順序を維持します。

fasteStMethodDodforListConcatenationinpythOndontsonistize:1)forsmallLists、operatorisefficient.2)forlargerlists、list.extend()orlistcomlethingisfaster、withextend()beingmorememory-efficient bymodifyigniviselistinistin-place。

to insertelementsIntopeaseThonList、useappend()toaddtotheend、insert()foraspificposition、andextend()formultipleElements.1)useappend()foraddingsingleitemstotheend.2)useintert()toaddataspecificindex、cont'slowerforforgelists.3)

PythonListsareimplementedasdynamicarrays、notlinkedlists.1)they restorediguourmemoryblocks、それはパフォーマンスに影響を与えることに影響を与えます

pythonoffersfourmainmethodstoremoveelements fromalist:1)removesthefirstoccurrenceofavalue、2)pop(index(index(index)removes regvess returnsaspecifiedindex、3)delstatementremoveselementselementsbyindexorseLice、および4)clear()

toresolvea "許可denided" errors whenrunningascript、sofflowthesesteps:1)checkandadaddadaddadadaddaddadadadaddadaddadaddadaddaddaddaddaddadaddadaddaddaddaddadaddaddaddadadaddadaddadaddadadisionsisingmod xmyscript.shtomakeitexexutable.2)


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

Dreamweaver Mac版
ビジュアル Web 開発ツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター
