コーヒー買ってきて☕
*私の投稿では Oxford-IIIIT Pet について説明しています。
OxfordIIITPet() は、以下に示すように Oxford-IIIT Pet データセットを使用できます。
*メモ:
- 最初の引数は root(Required-Type:str または pathlib.Path) です。 *絶対パスまたは相対パスが可能です。
- 2番目の引数はsplit(Optional-Default:"train"-Type:str)です。 ※「trainval」(画像3,680枚)または「test」(画像3,669枚)を設定できます。
- 3 番目の引数は target_types(Optional-Default:"attr"-Type:str または str のリスト) です。
*メモ:
- 「category」、「binary-category」、および/または「segmentation」を設定できます。 *メモ:
- 「カテゴリ」は37のカテゴリ(クラス)からのラベルです。
- "binary-category" は cat(0) または Dog(1) のラベルです。
- 「segmentation」はセグメンテーション トライマップ画像です。
- 空のタプルまたはリストを設定することもできます。
- 同じ値を複数設定できます。
- 値の順序が異なる場合、その要素の順序も異なります。
- 4 番目の引数は、transform(Optional-Default:None-Type:callable) です。
- 5 番目の引数は target_transform(Optional-Default:None-Type:callable) です。
- 6 番目の引数は download(Optional-Default:False-Type:bool) です。
*メモ:
- True の場合、データセットはインターネットからダウンロードされ、ルートに抽出 (解凍) されます。
- これが True で、データセットが既にダウンロードされている場合、データセットは抽出されます。
- これが True で、データセットがすでにダウンロードされ抽出されている場合は、何も起こりません。
- データセットがすでにダウンロードされ抽出されている場合は、その方が高速であるため、False にする必要があります。
- データセット (images.tar.gz および annotations.tar.gz) をここから data/oxford-iiit-pet/ に手動でダウンロードして抽出できます。
- 鉄道画像インデックスのカテゴリ(クラス)のラベルについて、アビシニアン(0)は0~49、アメリカンブルドッグ(1)は50~99、アメリカン ピット ブル テリア(2) は 100~149、 バセットハウンド(3)は150~199、ビーグル(4)は200~249、ベンガル(5)は250~299、バーマン(6)は300~349、 ボンベイ(7)は350~398、ボクサー(8)は399~448、ブリティッシュショートヘア(9)は449~498など
- テスト画像インデックスのカテゴリ(クラス)のラベルについて、アビシニアン(0)は0~97、アメリカンブルドッグ(1)は98~197、アメリカン ピット ブル テリア(2) は 198~297、 バセットハウンド(3)は298~397、ビーグル(4)は398~497、ベンガル(5)は498~597、バーマン(6)は598~697、 ボンベイ(7)は698~785、ボクサー(8)は786~884、ブリティッシュショートヘア(9)は885~984など。
from torchvision.datasets import OxfordIIITPet trainval_cate_data = OxfordIIITPet( root="data" ) trainval_cate_data = OxfordIIITPet( root="data", split="trainval", target_types="category", transform=None, target_transform=None, download=False ) trainval_bincate_data = OxfordIIITPet( root="data", split="trainval", target_types="binary-category" ) test_seg_data = OxfordIIITPet( root="data", split="test", target_types="segmentation" ) test_empty_data = OxfordIIITPet( root="data", split="test", target_types=[] ) test_all_data = OxfordIIITPet( root="data", split="test", target_types=["category", "binary-category", "segmentation"] ) len(trainval_cate_data), len(trainval_bincate_data) # (3680, 3680) len(test_seg_data), len(test_empty_data), len(test_all_data) # (3669, 3669, 3669) trainval_cate_data # Dataset OxfordIIITPet # Number of datapoints: 3680 # Root location: data trainval_cate_data.root # 'data' trainval_cate_data._split # 'trainval' trainval_cate_data._target_types # ['category'] print(trainval_cate_data.transform) # None print(trainval_cate_data.target_transform) # None trainval_cate_data._download # <bound method oxfordiiitpet._download of dataset oxfordiiitpet number datapoints: root location: data> len(trainval_cate_data.classes), trainval_cate_data.classes # (37, # ['Abyssinian', 'American Bulldog', 'American Pit Bull Terrier', # 'Basset Hound', 'Beagle', 'Bengal', 'Birman', 'Bombay', 'Boxer', # 'British Shorthair', ..., 'Wheaten Terrier', 'Yorkshire Terrier']) trainval_cate_data[0] # (<pil.image.image image mode="RGB" size="394x500">, 0) trainval_cate_data[1] # (<pil.image.image image mode="RGB" size="450x313">, 0) trainval_cate_data[2] # (<pil.image.image image mode="RGB" size="500x465">, 0) trainval_bincate_data[0] # (<pil.image.image image mode="RGB" size="394x500">, 0) trainval_bincate_data[1] # (<pil.image.image image mode="RGB" size="450x313">, 0) trainval_bincate_data[2] # (<pil.image.image image mode="RGB" size="500x465">, 0) test_seg_data[0] # (<pil.image.image image mode="RGB" size="300x225">, # <pil.pngimageplugin.pngimagefile image mode="L" size="300x225">) test_seg_data[1] # (<pil.image.image image mode="RGB" size="300x225">, # <pil.pngimageplugin.pngimagefile image mode="L" size="300x225">) test_seg_data[2] # (<pil.image.image image mode="RGB" size="229x300">, # <pil.pngimageplugin.pngimagefile image mode="L" size="229x300">) test_empty_data[0] # (<pil.image.image image mode="RGB" size="300x225">, None) test_empty_data[1] # (<pil.image.image image mode="RGB" size="300x225">, None) test_empty_data[2] # (<pil.image.image image mode="RGB" size="229x300">, None) test_all_data[0] # (<pil.image.image image mode="RGB" size="300x225">, # (0, 0, <pil.pngimageplugin.pngimagefile image mode="L" size="300x225">)) test_all_data[1] # (<pil.image.image image mode="RGB" size="300x225">, # (0, 0, <pil.pngimageplugin.pngimagefile image mode="L" size="300x225">)) test_all_data[2] # (<pil.image.image image mode="RGB" size="229x300">, # (0, 0, <pil.pngimageplugin.pngimagefile image mode="L" size="229x300">)) import matplotlib.pyplot as plt def show_images(data, ims, main_title=None): if len(data._target_types) == 0: plt.figure(figsize=(12, 6)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): plt.subplot(2, 5, i) im, _ = data[j] plt.imshow(X=im) elif len(data._target_types) == 1: if data._target_types[0] == "category": plt.figure(figsize=(12, 6)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): plt.subplot(2, 5, i) im, cate = data[j] plt.title(label=cate) plt.imshow(X=im) elif data._target_types[0] == "binary-category": plt.figure(figsize=(12, 6)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): plt.subplot(2, 5, i) im, bincate = data[j] plt.title(label=bincate) plt.imshow(X=im) elif data._target_types[0] == "segmentation": plt.figure(figsize=(12, 12)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): im, seg = data[j] if 1 <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173486413998858.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="OxfordIIITPet in PyTorch"></p><p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173486414377932.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="OxfordIIITPet in PyTorch"></p> <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173486414647181.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="OxfordIIITPet in PyTorch"></p> <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173486415046391.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="OxfordIIITPet in PyTorch"></p> <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173486415371337.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="OxfordIIITPet in PyTorch"></p> </pil.pngimageplugin.pngimagefile></pil.image.image></pil.pngimageplugin.pngimagefile></pil.image.image></pil.pngimageplugin.pngimagefile></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.pngimageplugin.pngimagefile></pil.image.image></pil.pngimageplugin.pngimagefile></pil.image.image></pil.pngimageplugin.pngimagefile></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>
以上がオックスフォードIIIPyTorch のペットの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonリストスライスの基本的な構文はリストです[start:stop:step]。 1.STARTは最初の要素インデックス、2。ストップは除外された最初の要素インデックスであり、3.ステップは要素間のステップサイズを決定します。スライスは、データを抽出するためだけでなく、リストを変更および反転させるためにも使用されます。

ListSoutPerformArraysIn:1)ダイナミシジョンアンドフレーケンティオン/削除、2)ストーリングヘテロゼンダタ、および3)メモリ効率の装飾、ButmayhaveslightPerformancostsinceNASOPERATIONS。

toconvertapythonarraytoalist、usetheList()constructororageneratorexpression.1)importhearraymoduleandcreateanarray.2)useList(arr)または[xforxinarr] toconvertoalistは、largedatatessを変えることを伴うものです。

choosearraysoverlistsinperbetterperformance andmemoryeficiencyspecificscenarios.1)largeNumericaldatasets:Araysreducememoryusage.2)パフォーマンス - クリティカル操作:ArraysOfferSpeedBoostsfortsfortsclikeappendedoring.3)タイプリー:Arrayesenforc

Pythonでは、ループに使用し、列挙し、包括的なリストを通過することができます。 Javaでは、従来のループを使用し、ループを強化してアレイを通過することができます。 1。Pythonリストトラバーサル方法は、ループ、列挙、およびリスト理解のためのものです。 2。Javaアレイトラバーサル法には、従来のループとループ用の強化が含まれます。

この記事では、バージョン3.10で導入されたPythonの新しい「マッチ」ステートメントについて説明します。これは、他の言語のスイッチステートメントに相当するものです。コードの読みやすさを向上させ、従来のif-elif-elよりもパフォーマンスの利点を提供します

Python 3.11の例外グループは、複数の例外を同時に処理することで、同時シナリオと複雑な操作でエラー管理を改善します。

Pythonの関数注釈は、タイプチェック、ドキュメント、およびIDEサポートの関数にメタデータを追加します。それらはコードの読みやすさ、メンテナンスを強化し、API開発、データサイエンス、ライブラリの作成において重要です。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

ホットトピック









