複数の列によるデータのグループ化と集計
Spark DataFrame の groupBy メソッドを使用する場合、特定の列に対して集計操作を実行してデータを要約できます。 。ただし、結果の DataFrame には、グループ化された列と集計結果のみが含まれます。
この制限に対処し、集計とともに追加の列を取得するには、次の解決策を検討してください。
使用最初または最後の集計
1 つのアプローチは、first() または last() 集計関数を使用して、グループ化された DataFrame に追加の列を含めます。例:
df.groupBy(df("age")).agg(Map("name" -> "first", "id" -> "count"))
このクエリは、「age」、「name」、「count(id)」の 3 つの列を持つ DataFrame を作成します。 「name」列には各年齢グループの最初の値が含まれ、「count(id)」列には各年齢グループの「id」値の数が含まれます。
集計結果の結合
もう 1 つの解決策は、グループ化された列を結合キーとして使用して、集約された DataFrame を元の DataFrame に結合することです。このアプローチでは、元の DataFrame のすべての列が保持されます。
val aggregatedDf = df.groupBy(df("age")).agg(Map("id" -> "count")) val joinedDf = aggregatedDf.join(df, Seq("age"), "left")
結果の DataFrame "joinedDf" には、元の DataFrame のすべての列と、グループ化された DataFrame の "count(id)" 集計が含まれます。
ウィンドウ関数の使用
最後に、ウィンドウ関数を使用して、列を追加して groupBy の目的の動作をエミュレートすることもできます。以下に例を示します。
df.withColumn("rowNum", row_number().over(Window.partitionBy("age"))) .groupBy("age").agg(first("name"), count("id")) .select("age", "name", "count(id)")
このクエリは、各年齢グループ内の各レコードに行番号を割り当てるウィンドウ関数を作成します。次に、この行番号を使用して、「count(id)」集計とともに各年齢グループの最初に出現した「name」を取得します。
アプローチの選択は、特定の要件とパフォーマンスの考慮事項によって異なります。あなたのアプリケーション。
以上がgroupBy を使用して Spark DataFrame でデータを集計するときにすべての列を保持するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

MySQLは、初心者がデータベーススキルを学ぶのに適しています。 1.MySQLサーバーとクライアントツールをインストールします。 2。selectなどの基本的なSQLクエリを理解します。 3。マスターデータ操作:テーブルを作成し、データを挿入、更新、削除します。 4.高度なスキルを学ぶ:サブクエリとウィンドウの関数。 5。デバッグと最適化:構文を確認し、インデックスを使用し、選択*を避け、制限を使用します。

MySQLは、テーブル構造とSQLクエリを介して構造化されたデータを効率的に管理し、外部キーを介してテーブル間関係を実装します。 1.テーブルを作成するときにデータ形式と入力を定義します。 2。外部キーを使用して、テーブル間の関係を確立します。 3。インデックス作成とクエリの最適化により、パフォーマンスを改善します。 4.データベースを定期的にバックアップおよび監視して、データのセキュリティとパフォーマンスの最適化を確保します。

MySQLは、Web開発で広く使用されているオープンソースリレーショナルデータベース管理システムです。その重要な機能には、次のものが含まれます。1。さまざまなシナリオに適したInnodbやMyisamなどの複数のストレージエンジンをサポートします。 2。ロードバランスとデータバックアップを容易にするために、マスタースレーブレプリケーション機能を提供します。 3.クエリの最適化とインデックスの使用により、クエリ効率を改善します。

SQLは、MySQLデータベースと対話して、データの追加、削除、変更、検査、データベース設計を実現するために使用されます。 1)SQLは、ステートメントの選択、挿入、更新、削除を介してデータ操作を実行します。 2)データベースの設計と管理に作成、変更、ドロップステートメントを使用します。 3)複雑なクエリとデータ分析は、ビジネス上の意思決定効率を改善するためにSQLを通じて実装されます。

MySQLの基本操作には、データベース、テーブルの作成、およびSQLを使用してデータのCRUD操作を実行することが含まれます。 1.データベースの作成:createdatabasemy_first_db; 2。テーブルの作成:createTableBooks(idintauto_incrementprimarykey、titlevarchary(100)notnull、authorvarchar(100)notnull、published_yearint); 3.データの挿入:InsertIntoBooks(タイトル、著者、公開_year)VA

WebアプリケーションにおけるMySQLの主な役割は、データを保存および管理することです。 1.MYSQLは、ユーザー情報、製品カタログ、トランザクションレコード、その他のデータを効率的に処理します。 2。SQLクエリを介して、開発者はデータベースから情報を抽出して動的なコンテンツを生成できます。 3.MYSQLは、クライアントサーバーモデルに基づいて機能し、許容可能なクエリ速度を確保します。

MySQLデータベースを構築する手順には次のものがあります。1。データベースとテーブルの作成、2。データの挿入、および3。クエリを実行します。まず、createdAtabaseおよびcreateTableステートメントを使用してデータベースとテーブルを作成し、InsertINTOステートメントを使用してデータを挿入し、最後にSelectステートメントを使用してデータを照会します。

MySQLは、使いやすく強力であるため、初心者に適しています。 1.MYSQLはリレーショナルデータベースであり、CRUD操作にSQLを使用します。 2。インストールは簡単で、ルートユーザーのパスワードを構成する必要があります。 3.挿入、更新、削除、および選択してデータ操作を実行します。 4. Orderby、Where and Joinは複雑なクエリに使用できます。 5.デバッグでは、構文をチェックし、説明を使用してクエリを分析する必要があります。 6.最適化の提案には、インデックスの使用、適切なデータ型の選択、優れたプログラミング習慣が含まれます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

WebStorm Mac版
便利なJavaScript開発ツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。
