Pandas の集計計算のための GroupBy について
大規模なデータセットを扱う場合、pandas はデータをグループ化するための groupby() と呼ばれる強力な関数を提供します。特定の列を選択し、グループ化されたデータに対して計算を実行します。このコンテキストで、groupby() を利用してグループ内の値の合計を計算する方法を見てみましょう。
次のデータフレームを考えてみましょう。ここには、複数の日付にわたる個人による果物の購入に関する詳細が含まれています:
| Fruit | Date | Name | Number | |---|---|---|---| | Apples | 10/6/2016 | Bob | 7 | | Apples | 10/6/2016 | Bob | 8 | | Apples | 10/6/2016 | Mike | 9 | | Apples | 10/7/2016 | Steve | 10 | | Apples | 10/7/2016 | Bob | 1 | | Oranges | 10/7/2016 | Bob | 2 | | Oranges | 10/6/2016 | Tom | 15 | | Oranges | 10/6/2016 | Mike | 57 | | Oranges | 10/6/2016 | Bob | 65 | | Oranges | 10/7/2016 | Tony | 1 | | Grapes | 10/7/2016 | Bob | 1 | | Grapes | 10/7/2016 | Tom | 87 | | Grapes | 10/7/2016 | Bob | 22 | | Grapes | 10/7/2016 | Bob | 12 | | Grapes | 10/7/2016 | Tony | 15 |
目標: 名前ごとにグループ化された果物の購入額の合計を計算する
データを果物 (Fruit) と個人の名前 (Name) の両方でグループ化し、各個人が購入した果物の合計数を計算することを目的としています。解決策: GroupBy.sum()これを実現するには、次の列を持つ groupby() 関数を使用します。 grouping:
グループ化されたデータに適用される sum() メソッドは、指定された列の値を自動的に集計します (この場合、Number は購入した果物の数を表します)。result = df.groupby(['Fruit', 'Name']).sum()出力:
コードの出力は、集計された結果を提供します。値:
ここでは、各果物カテゴリ内で各個人が購入した果物の合計数を観察できます。たとえば、「ボブ」グループでは、購入した「リンゴ」の合計数は 16 個、購入した「ブドウ」の合計数は 35 個です。| | Number | |----------------|--------| | Fruit | Name | | Apples | Bob | 16 | | | Mike | 9 | | | Steve | 10 | | Grapes | Bob | 35 | | | Tom | 87 | | | Tony | 15 | | Oranges | Bob | 67 | | | Mike | 57 | | | Tom | 15 | | | Tony | 1 |
以上がPandas の「groupby()」関数はグループ内の値の合計をどのように計算できますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonに2つのリストを接続する多くの方法があります。1。オペレーターを使用しますが、これはシンプルですが、大きなリストでは非効率的です。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3。=演算子を使用します。これは効率的で読み取り可能です。 4。itertools.chain関数を使用します。これはメモリ効率が高いが、追加のインポートが必要です。 5。リストの解析を使用します。これはエレガントですが、複雑すぎる場合があります。選択方法は、コードのコンテキストと要件に基づいている必要があります。

Pythonリストをマージするには多くの方法があります。1。オペレーターを使用します。オペレーターは、シンプルですが、大きなリストではメモリ効率的ではありません。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3. Itertools.chainを使用します。これは、大規模なデータセットに適しています。 4.使用 *オペレーター、1つのコードで小規模から中型のリストをマージします。 5. numpy.concatenateを使用します。これは、パフォーマンス要件の高い大規模なデータセットとシナリオに適しています。 6.小さなリストに適したが、非効率的な追加方法を使用します。メソッドを選択するときは、リストのサイズとアプリケーションのシナリオを考慮する必要があります。

compiledlanguagesOfferspeedandsecurity、foredlanguagesprovideeaseofuseandportability.1)compiledlanguageslikec arefasterandsecurebuthavelOnderdevelopmentsplat dependency.2)

Pythonでは、forループは反復可能なオブジェクトを通過するために使用され、条件が満たされたときに操作を繰り返し実行するためにしばらくループが使用されます。 1)ループの例:リストを通過し、要素を印刷します。 2)ループの例:正しいと推測するまで、数値ゲームを推測します。マスタリングサイクルの原則と最適化手法は、コードの効率と信頼性を向上させることができます。

リストを文字列に連結するには、PythonのJoin()メソッドを使用して最良の選択です。 1)join()メソッドを使用して、 '' .join(my_list)などのリスト要素を文字列に連結します。 2)数字を含むリストの場合、連結する前にマップ(str、数字)を文字列に変換します。 3) '、'などの複雑なフォーマットに発電機式を使用できます。 4)混合データ型を処理するときは、MAP(STR、Mixed_List)を使用して、すべての要素を文字列に変換できるようにします。 5)大規模なリストには、 '' .join(lage_li)を使用します

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)

keydifferencesは、「for」と「while "loopsare:1)" for "for" loopsareideal forterating overencesonownowiterations、while2) "for" for "for" for "for" for "for" for "for" for for for for "wide" loopsarebetterunuinguntinunuinguntinisisisisisisisisisisisisisisisisisisisisisisisisisisisations.un

Pythonでは、さまざまな方法でリストを接続して重複要素を管理できます。1)オペレーターを使用するか、すべての重複要素を保持します。 2)セットに変換してから、リストに戻ってすべての重複要素を削除しますが、元の順序は失われます。 3)ループを使用するか、包含をリストしてセットを組み合わせて重複要素を削除し、元の順序を維持します。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

メモ帳++7.3.1
使いやすく無料のコードエディター

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境
