検索
ホームページバックエンド開発Python チュートリアルナレッジ グラフを使用してハリー ポッターの世界をナビゲートする

標的

あなたはハリー・ポッターの世界に関するすべてをすぐに手に入れたいと思っているハリー・ポッターのファンですか?それとも、ハリー・ポッターのさまざまなキャラクターがどのように集まっているかを示すクールな表で友達を感動させたいだけですか?ナレッジ グラフ以外に探す必要はありません。

このガイドでは、ラップトップとお気に入りの本だけを使って Neo4J でナレッジ グラフを作成する方法を説明します。

ナレッジグラフとは

ウィキペディアによると:

ナレッジ グラフは、データを表現し操作するためにグラフ構造のデータ モデルまたはトポロジを使用する知識ベースです。

あなたは何が必要ですか

ハードウェアに関しては、必要なのはコンピューター (できれば Nvidia グラフィック カードを搭載したコンピューター) だけです。完全に自給自足するために、ローカル LLM セットアップを使用しますが、同じ目的で OpenAI API を簡単に使用することもできます。

セットアップの手順

次のものが必要です:

  1. オラマとあなたのお気に入りの LLM モデル
  2. Python 環境
  3. Neo4J

オラマ

私は WSL2 の Ubuntu 24.04 でコーディングしているため、GPU ワークロードを簡単にパススルーできるように、Ollama Docker を使用しています。 Ollama を Docker コンテナとして実行するのは、最初に Nvidia コンテナ ツールキットをインストールし、次に以下をインストールするだけで簡単です。

docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

Nvidia GPU をお持ちでない場合は、CLI で次のコマンドを使用して CPU のみの Ollama を実行できます。

docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

完了したら、お気に入りの LLM モデルを Ollama に取り込むことができます。 Ollamaで利用可能なモデルのリストはここにあります。たとえば、qwen2.5 をプルしたい場合は、CLI で次のコマンドを実行できます:

docker exec -it ollama ollama run qwen2.5

これでオラマの作業は完了です!

Python環境

まず Python 仮想環境を作成して、インストールするパッケージや構成の変更をグローバルに適用するのではなく、環境内に制限します。次のコマンドは、仮想環境 harry-potter-rag:
を作成します。

python -m venv harry-potter-rag

その後、次のコマンドを使用して仮想環境をアクティブ化できます。

source tutorial-env/bin/activate

次に、pip を使用して、主に LangChain から関連するパッケージをインストールします。

%pip install --upgrade --quiet  langchain langchain-community langchain-openai langchain-experimental neo4j

Neo4J のセットアップ

Neo4J を Docker コンテナとしてセットアップします。特定の構成でのセットアップを容易にするために、docker compose を使用します。以下を docker-compose.yaml というファイルにコピーし、同じディレクトリで docker-compose up -d を実行して Neo4J をセットアップするだけです。

この設定により、データ、ログ、プラグインがローカル フォルダー (/data) に確実に保存されます。 /ログとプラグイン。

docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

ナレッジグラフの構築

Jupyter Notebook でナレッジ グラフの構築を開始できるようになりました。まず、以下を使用して Ollama LLM インスタンスをセットアップします:

docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

次に、LLM を Neo4J に接続します。

docker exec -it ollama ollama run qwen2.5

さあ、お気に入りのハリー・ポッターのテキスト、またはお気に入りの本を取得します。LangChain を使用してテキストをチャンクに分割します。チャンク化は、長いテキストをパーツに分割する戦略です。各パーツを LLM に送信してノードとエッジに変換し、各チャンクのノードとエッジを Neo4J に挿入できます。簡単な入門として、ノードはグラフ上に表示される円であり、各エッジは 2 つのノードを結合します。

このコードは、チャンクがどのように見えるかを簡単にプレビューするために最初のチャンクも出力します。

python -m venv harry-potter-rag

さあ、GPU に重労働を任せて、テキストをナレッジ グラフに変換しましょう。この本全体を詳しく説明する前に、LLM が希望どおりのグラフを返すようにより適切にガイドするためのプロンプトを試してみましょう。

プロンプトは基本的に、期待される内容の例、または応答に表示される内容の指示です。ナレッジ グラフのコンテキストでは、人物と組織のみをノードとして抽出し、エンティティが与えられた場合に特定のタイプの関係のみを受け入れるように LLM に指示できます。たとえば、配偶者の関係は、個人と組織の間ではなく、個人と他の人の間でのみ発生することを許可できます。

テキストの最初の部分に LLMGraphTransformer を使用して、グラフがどうなるかを確認できます。これは、結果が好みになるまでプロンプトを調整する良い機会です。

次の例では、個人または組織のノードが想定されており、 allowed_relationships は許可される関係のタイプを指定します。 LLM がさまざまな元のテキストをキャプチャできるようにするために、strict_mode を False に設定して、以下で定義されていない他の関係やエンティティもキャプチャできるようにします。代わりに strict_mode を True に設定すると、許可されている内容に準拠していないエンティティと関係は削除されるか、許可されている内容に強制的に適用される可能性があります (これは不正確である可能性があります)。

source tutorial-env/bin/activate

プロンプトの微調整が完了したら、ナレッジ グラフに取り込みます。 Try-Except は、Neo4J に適切に挿入できなかった応答を明示的に処理するものであることに注意してください。コードは、エラーがログに記録されるように設計されていますが、後続のチャンクをグラフに変換するループの進行をブロックしません。

docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

上記のループでは、「ハリー・ポッターと賢者の石」、「ハリー・ポッターと秘密の部屋」、「ハリー・ポッターとアズカバンの囚人」を読み込むのに約 46 分かかりました。最終的には 4868 個の一意のノードができました。簡単なプレビューを以下でご覧いただけます。グラフが非常に混雑しており、誰が他の誰とどのように関係しているかを区別するのが難しいことがわかります。

Navigating the world of Harry Potter with Knowledge Graphs

暗号クエリを利用して、たとえばダンブルドアを調べることができるようになりました!

docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

Navigating the world of Harry Potter with Knowledge Graphs

OK、ダンブルドア本人だけを話しましょう。彼がハリー・ポッターとどのような関係があるのか​​見てみましょう。

docker exec -it ollama ollama run qwen2.5

Navigating the world of Harry Potter with Knowledge Graphs

わかりました。ハリーとダンブルドアが何を話したかに興味があります。

python -m venv harry-potter-rag

Navigating the world of Harry Potter with Knowledge Graphs

探しているものを本当に見つけるためには多くの文書を参照する必要があり、グラフがまだ非常に複雑であることがわかります。ノードとしてのドキュメントのモデリングが理想的ではないことがわかり、LLMGraphTransformer でさらなる作業を行って、グラフをより直感的に使用できるようにすることができます。

結論

インターネットに接続する必要もなく、自分のローカル コンピューター上でナレッジ グラフをセットアップすることがいかに簡単であるかがわかります。

ハリー ポッターの世界のナレッジ グラフ全体も含まれる github リポジトリは、ここから入手できます。

追記

harry_potter.graphml ファイルを Neo4J にインポートするには、graphml ファイルを neo4j /import フォルダーにコピーし、Neo4J ブラウザで次のコマンドを実行します。

source tutorial-env/bin/activate

以上がナレッジ グラフを使用してハリー ポッターの世界をナビゲートするの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python vs. C:重要な違​​いを理解しますPython vs. C:重要な違​​いを理解しますApr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python vs. C:プロジェクトのためにどの言語を選択しますか?Python vs. C:プロジェクトのためにどの言語を選択しますか?Apr 21, 2025 am 12:17 AM

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

Pythonの目標に到達する:毎日2時間のパワーPythonの目標に到達する:毎日2時間のパワーApr 20, 2025 am 12:21 AM

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

2時間の最大化:効果的なPython学習戦略2時間の最大化:効果的なPython学習戦略Apr 20, 2025 am 12:20 AM

2時間以内にPythonを効率的に学習する方法は次のとおりです。1。基本的な知識を確認し、Pythonのインストールと基本的な構文に精通していることを確認します。 2。変数、リスト、関数など、Pythonのコア概念を理解します。 3.例を使用して、基本的および高度な使用をマスターします。 4.一般的なエラーとデバッグテクニックを学習します。 5.リストの概念を使用したり、PEP8スタイルガイドに従ったりするなど、パフォーマンスの最適化とベストプラクティスを適用します。

PythonとCのどちらかを選択:あなたに適した言語PythonとCのどちらかを選択:あなたに適した言語Apr 20, 2025 am 12:20 AM

Pythonは初心者やデータサイエンスに適しており、Cはシステムプログラミングとゲーム開発に適しています。 1. Pythonはシンプルで使いやすく、データサイエンスやWeb開発に適しています。 2.Cは、ゲーム開発とシステムプログラミングに適した、高性能と制御を提供します。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Python vs. C:プログラミング言語の比較分析Python vs. C:プログラミング言語の比較分析Apr 20, 2025 am 12:14 AM

Pythonはデータサイエンスと迅速な発展により適していますが、Cは高性能およびシステムプログラミングにより適しています。 1. Python構文は簡潔で学習しやすく、データ処理と科学的コンピューティングに適しています。 2.Cには複雑な構文がありますが、優れたパフォーマンスがあり、ゲーム開発とシステムプログラミングでよく使用されます。

1日2時間:Python学習の可能性1日2時間:Python学習の可能性Apr 20, 2025 am 12:14 AM

Pythonを学ぶために1日2時間投資することは可能です。 1.新しい知識を学ぶ:リストや辞書など、1時間で新しい概念を学びます。 2。練習と練習:1時間を使用して、小さなプログラムを書くなどのプログラミング演習を実行します。合理的な計画と忍耐力を通じて、Pythonのコアコンセプトを短時間で習得できます。

Python vs. C:曲線と使いやすさの学習Python vs. C:曲線と使いやすさの学習Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール