トレーニング済み TensorFlow モデルの保存と復元
TensorFlow は、トレーニング済みモデルの保存と復元のためのシームレスな機能を提供し、モデルを永続化して再利用できます。
保存Model
トレーニングされたモデルを TensorFlow に保存するには、tf.train.Saver クラスを使用できます。以下に例を示します。
import tensorflow as tf # Prepare placeholders and variables w1 = tf.placeholder(tf.float32, name="w1") w2 = tf.placeholder(tf.float32, name="w2") b1 = tf.Variable(2.0, name="bias") feed_dict = {w1: 4, w2: 8} # Define an operation to be restored w3 = tf.add(w1, w2) w4 = tf.multiply(w3, b1, name="op_to_restore") sess = tf.Session() sess.run(tf.global_variables_initializer()) # Create a saver object saver = tf.train.Saver() # Run the operation and save the graph print(sess.run(w4, feed_dict)) saver.save(sess, 'my_test_model', global_step=1000)
モデルの復元
以前に保存したモデルを復元するには、次のプロセスを使用できます:
import tensorflow as tf sess = tf.Session() # Load the meta graph and restore weights saver = tf.train.import_meta_graph('my_test_model-1000.meta') saver.restore(sess, tf.train.latest_checkpoint('./')) # Access saved variables directly print(sess.run('bias:0')) # Prints 2 (the bias value) # Access and create feed-dict for new input data graph = tf.get_default_graph() w1 = graph.get_tensor_by_name("w1:0") w2 = graph.get_tensor_by_name("w2:0") feed_dict = {w1: 13.0, w2: 17.0} # Access the desired operation op_to_restore = graph.get_tensor_by_name("op_to_restore:0") print(sess.run(op_to_restore, feed_dict)) # Prints 60 ((w1 + w2) * b1)
追加のシナリオとユースケースについては、提供された回答で提供されるリソースを参照してください。保存と復元について詳しく説明されています。 TensorFlow モデル。
以上がトレーニングされた TensorFlow モデルを保存および復元するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは解釈された言語ですが、コンパイルプロセスも含まれています。 1)Pythonコードは最初にBytecodeにコンパイルされます。 2)ByteCodeは、Python Virtual Machineによって解釈および実行されます。 3)このハイブリッドメカニズムにより、Pythonは柔軟で効率的になりますが、完全にコンパイルされた言語ほど高速ではありません。

useaforloopwhenteratingoverasequenceor foraspificnumberoftimes; useawhileloopwhentinuninguntinuntilaConditionismet.forloopsareidealforknownownownownownownoptinuptinuptinuptinuptinutionsituations whileoopsuitsituations withinterminedationations。

pythonloopscanleadtoErrorslikeinfiniteloops、ModifiningListsDuringiteration、Off-Oneerrors、Zero-dexingissues、およびNestededLoopinefficiencies.toavoidhese:1)use'i

forloopsareadvastountousforknowterations and sequences、offeringsimplicityandeadability;

pythonusesahybridmodelofcompilation andtertation:1)thepythoninterpretercompilessourcodeodeplatform-indopent bytecode.2)thepythonvirtualmachine(pvm)thenexecuteTesthisbytecode、balancingeaseoputhswithporformance。

pythonisbothintersedand compiled.1)it'scompiledtobytecode forportabalityacrossplatforms.2)bytecodeisthenは解釈され、開発を許可します。

loopsareideal whenyouwhenyouknumberofiterationsinadvance、foreleloopsarebetterforsituationsは、loopsaremoreedilaConditionismetを使用します

henthenumber ofiterationsisknown advanceの場合、dopendonacondition.1)forloopsareideal foriterating over for -for -for -saredaverseversives likelistorarrays.2)whileopsaresupasiable forsaresutable forscenarioswheretheloopcontinupcontinuspificcond


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

Dreamweaver Mac版
ビジュアル Web 開発ツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 中国語版
中国語版、とても使いやすい
